263 resultados para QUANTUM-STATE
Resumo:
We have investigated the temperature dependence of the photoluminescence (PL) spectrum of self-organized InAs/GaAs quantum dots. A distinctive double-peak feature of the PL spectra from quantum dots has been observed, and a bimodal distribution of dot sizes has also been confirmed by scanning tunneling microscopy image for uncapped sample. The power-dependent PL study demonstrates that the distinctive PL emission peaks are associated with the ground-state emission of islands in different size branches. The temperature-dependent PL study shows that the PL quenching temperature for different dot families is different. Due to lacking of the couple between quantum dots, an unusual temperature dependence of the linewidth and peak energy of the dot ensemble photoluminescence has not been observed. In addition, we have tuned the emission wavelength of InAs QDs to 1.3 mu m at room temperature.
Resumo:
Postgrowth rapid thermal annealing was performed on InGaAs/GaAs quantum dots grown by molecular beam epitaxy. The blue shift of the emission peak and the narrowing of the luminescence line width are observed at lower annealing temperature. However, when the annealing temperature is increased to 850 degrees C, the emission line width becomes larger. The TEM image of this sample shows that the surface becomes rough, and some large clusters are formed, which is due to the interdiffusion of In, Ga atoms at the InGaAs/GaAs interface and to the strain relaxation. The material is found to degrade dramatically when the annealing temperature is further increased to 900 degrees C, while emission from quantum dots can still be detected, along with the appearance of the emission from excited state. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The pressure behaviour of In0.55Al0.45As/Al0.5Ga0.5As self-assembled quantum dots (QDs) has been studied at 15 K in the pressure range of 0-1.3 GPa. The atomic force microscopy image shows that the QDs have a multi-modal distribution in size. Three emission peaks were observed in the photoluminescence (PL) spectra, corresponding to the different QD families. The measured pressure coefficients are 82, 93 and 98 meV GPa(-1) for QDs with average lateral size of 26, 52 and 62 nm, respectively. The pressure coefficient of small QDs is about 17% smaller than that of bulk In0.55Al0.45As An envelope-function calculation was used to analyse the effect of pressure-induced change of barrier height, effective mass and dot size on the pressure coefficients of QDs. The Gamma-X state mixing was also included in the evaluation of the reduction of the pressure coefficients. The results indicate that both the pressure-induced increase of effective mass and Gamma-X mixing respond to the decrease of pressure coefficients, and the Gamma-X mixing is more important for small dots. The calculated Gamma-X interaction potentials are 15 and 10 meV for QDs with lateral size of 26 and 52 nm, respectively. A type-II alignment for the X conduction band is suggested according to the pressure dependence of the PL intensities. The valence-band offset was then estimated as 0.15 +/- 0.02.
Resumo:
We have investigated the temperature and excitation power dependence of photoluminescence properties of InAs self-assembled quantum dots grown between two Al0.5Ga0.5As quantum wells. The temperature evolutions of the lower-and higher-energy transition in the photoluminescence spectra have been observed. The striking result is that a higher-energy peak appears at 105 K and its relative intensity increases with temperature in the 105-291 K range. We demonstrate that the higher-energy peak corresponds to the excited-state transition involving the bound-electron state of quantum dots and the two-dimensional hole continuum of wetting layer. At higher temperature, the carrier transition associated with the wetting layer dominates the photoluminescence spectra. A thermalization model is given to explain the process of hole thermal transfer between wetting layer and quantum dots. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
We have made a normal incidence high infrared absorption efficiency AlAs/Al0.55Ga0.45As multiple-quantum-well structure grown on (211) GaAs substrates by molecular beam epitaxy (MBE). A strong infrared absorption signal at 11.6 mu m due to the transition of the ground state to the first excited state, and a small signal at 6.8 mu m due to the transition from the ground state to continuum. were observed. A 45 degrees tilted incidence measurement was also performed on the same sample for the comparison with a normal incidence measurement. Both measurements provide important information about the quantum well absorption efficiency. Efficiencies which evaluate the absorption of electric components perpendicular and parallel to the well plane are eta(perpendicular to) = 25% and eta(parallel to) = 88%, respectively. The total efficiency is then deduced to be eta = 91%. It is apparent that the efficiency eta(parallel to) dominates the total quantum efficiency eta Because an electron in the (211) AlAs well has a small effective mass (m(zx)* or m(zy)*), the normal incidence absorption coefficient is expected to be higher:than that grown on (511) and (311) substrates. Thus, in the present study, we use the (211) substrate to fabricate QWIP. The experimental results indicate the potential of these novel structures for use as normal incidence infrared photodetectors.
Resumo:
We investigate the electronic structures of the inhomogeneous quantum dots within the framework of the effective mass theory. The results show that the energies of electron and hole states depend sensitively on the relative magnitude 77 of the core radius to the capped quantum dot radius. The spatial distribution of the electrons and holes vary significantly when the ratio eta changes. A quantum-confinement-driven type-II-type-I transition is found in GaAs/AlxGa1-xAs-capped quantum dot structures. The phase diagram is obtained for different capped quantum dot radii. The ground-state exciton binding energy shows a highly nonlinear dependence on the innner structures of inhomogeneous quantum dots, which originates from the redistribution of the electron and hole wave functions.
Resumo:
In this work we report the optical and microscopic properties of self-organized InAs/GaAs quantum dots grown by molecular beam epitaxy on (1 0 0) oriented GaAs substrates. A distinctive double-peak feature of the PL spectra from quantum dots has been observed, and a bimodal distribution of dot sizes has also been confirmed by scanning tunneling microscopy (STM) image for uncapped sample. The power-dependent photoluminescence (PL) study demonstrates that the distinctive PL emission peaks are associated with the ground-state emission of islands in different size branches. The temperature-dependent PL study shows that the PL quenching temperature for different dot families is different. It is shown that the coupling between quantum dots plays a key role in unusual temperature dependence of QD photoluminescence. In addition, we have tuned the emission wavelength of InAs QDs to 1.3 mu m at room temperature. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Phonon modes in spherical GaAs quantum dots (QDs) with up to 11,855 atoms (8 nm in size) are calculated by using an empirical microscopic model. The group theory is employed to reduce the computational intensity, which further allows us to investigate the quantum confinement of phonon modes with different symmetries and reveals a phenomenon that phonon modes with different symmetries have different quantum confinement effect. For zinc-blende structure, the modes with the A(1) symmetry has the strongest quantum confinement effect and the T-1 modes the weakest. This could cause a crossover of symmetries of the highest frequency from A(1) to T-2 when the size of QDs decreases. (C) 1999 Elsevier Science Ltd, All rights reserved.
Resumo:
The photovoltaic spectral features and the behaviors of photocurrent versus the electrode potential for near surface In0.15Ga0.85As/GaAs quantum well electrodes have been investigated in nonaqueous solutions of ferrocene and acetylferrocene. The photovoltaic spectrum shows a sharp structure that reflects confined state-to-state exciton transition in the quantum well. Deep dips are observed in the photocurrent versus the electrode potential curves in both electrolytes at the different electrode potentials under the illumination of exciton resonance wavelength. These dips are qualitatively explained by considering the interfacial tunneling transfer of photogenerated electron within the quantum well.
Resumo:
The hole effective-mass Hamiltonian for the semiconductors with wurtzite structure is given. The effective-mass parameters are determined by fitting the valence-band structure near the top with that calculated by the empirical pseudopotential method: The energies and corresponding wave functions are calculated with the obtained effective-mass Hamiltonian for the CdSe quantum spheres, and the energies as functions of sphere radius R are given for the zero spin-orbital coupling (SOC) and finite SOC cases. The energies do not vary as 1/R-2 as the general cases, which is caused by the crystal-field splitting energy and the linear terms in the Hamiltonian. It is found that the ground state is not the optically active S state for the R smaller than 30 Angstrom, in agreement with the experimental results and the "dark exciton'' theory. [S0163-1829(99)01040-1].
Resumo:
Deep level transient spectroscopy (DLTS) technique was successfully applied to characterize the electric properties of p type self-organized InAs quantum dots. The ground state energy and capture barrier energy of hole of quantum dots were measured for the first time. The energy of ground state of 2.5ML InAs quantum dots with respect to the valence band of bulk GaAs was obtained being about 0.09eV, and there was a barrier associated to the change of charge state of quantum dots. The capture barrier energy of such dots for hole was about 0.26eV. The work is very meaningful for further understanding the intrinsic properties of quantum dots.
Resumo:
We report the observation of the field-driven blue shift at near absorption edge in the photo-current response spectra of delta-doped Si n-i-p-i multiple quantum wells due to the widening of the effective energy gap. This phenomenon differs from the observed results in GaAs/AlGaAs and GeSi/Si superlattices, because the physical mechanisms of forming energy band in these superlattice samples are different. Our experimental results are interpreted satisfactorily by the theoretical calculation. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
GaAs/AlAs/GaAlAs double barrier quantum well (DBQW) structures are employed for making 3-5 um photovoltaic infrared (IR) detectors with a peak detectivity of 5 x 10(11) cm Hz(1/2)/W at 80 K. Double crystal X-ray diffraction is combined with synchrotron radiation X-ray analysis to determine successfully the exact thickness of GaAs, AlAs and GaAlAs sublayers. The interband photovoltaic (PV) spectra of the linear array of the detectors are measured directly by edge excitation method, providing the information about spatial separation processes of photogenerated carriers in the multiquantum wells and the distribution of built-in field in the active region. The spectral response of the IR photocurrent of the devices is also measured and compared with the temperature dependent IR absorption of the DBQW samples in order to get a better understanding of the bias-controlled optical and transport behavior of the detector photoresponse and thus to optimize the detector performance. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The effect of growth interruption (GI) on the optical properties of InAs/GaAs quantum dots was investigated by cw and time-resolved photoluminescence (PL). It is found that this effect depends very much on the growth conditions, in particular, the growth rate. In the case of low growth rate, we have found that the GI may introduce either red-shift or blue-shift in PL with increase of the interruption lime, depending on the InAs thickness. The observed red shift in our 1.7 monolayer (ML) sample is attributed to the evolution of the InAs islands during the growth interruption. While the blue-shift in the 3 ML sample is suggested to be mainly caused by the strain effect. In addition, nearly zero shift was observed for the sample with thickness around 2.5 ML, (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
We have observed an extremely narrow absorption spectrum due to bound-to-continuum transition in GaAs/AlxGa1-xAs multiple quantum wells (MQWs). Its linewidth is only about one tenth of the values reported previously. Our calculation indicates that the broadening of the excited state in the continuum has little contribution to the absorption linewidth. We have grown a sample whose MQW region contains two kinds of wells with a minor thickness inhomogeneity. Its resultant absorption linewidth is six times as large as that of homogeneous well sample, which is in good agreement with our theoretical analysis. Thus we can suggest that the wider absorption spectra reported by many authors may be due to the well width inhomogeneity. (C) 1998 American Institute of Physics. [S0003-6951(98)03430-5]