225 resultados para Pulsed laser range finder


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Femtosecond pulsed lasers have been widely used for materials microprocessing. Due to their ultrashort pulse width and ultrahigh light intensity, the process is generally characterized by the nonthermal diffusion process. We observed various induced microstructures such as refractive-index-changed structures, color center defects, microvoids and microcracks in transparent materials (e.g., glasses after the femtosecond laser irradiation), and discussed the possible applications of the microstructures in the fabrication of various micro optical devices [e.g., optical waveguides, microgratings, microlenses, fiber attenuators, and three-dimensional (3D) optical memory]. In this paper, we review our recent research developments on single femtosecond-laser-induced nanostructures. We introduce the space-selective valence state manipulation of active ions, precipitation and control of metal nanoparticles and light polarization-dependent permanent nanostructures, and discuss the mechanisms and possible applications of the observed phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using a pump recycling configuration, the maximum power of 8.1 W in the wavelength range 1.935-1.938 mu m is generated by a 5-mm long Tm:YAlO3 (4 at. %) laser operating at 18 degrees C with a pump power of 24 W. The highest slope efficiency of 42% is attained, and the pump quantum efficiency is up to 100%. The Tm:YAlO3 laser is employed as a pumping source of singly-doped Ho(l%):GdVO4 laser operating at room temperature, in which continuous wave output power of greater than 0.2 W at 2.05 mu m is achieved with a slope efficiency of 9%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compact femtosecond laser operation of Yb:Gd2SiO5 (Yb:GSO) crystal was demonstrated under high-brightness diode-end-pumping. A semiconductor saturable absorption mirror was used to start passive mode-locking. Stable mode-locking could be realized near the emission bands around 1031, 1048, and 1088 nm, respectively. The mode-locked Yb: GSO laser could be tuned from one stable mode-locking band to another with adjustable pulse durations in the range 1 similar to 100 ps by slightly aligning laser cavity to allow laser oscillations at different central wavelengths. A pair of SF10 prisms was inserted into the laser cavity to compensate for the group velocity dispersion. The mode-locked pulses centered at 1031 nm were compressed to 343 fs under a typical operation situation with a maximum output power of 396 mW. (c) 2007 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CO2 laser irradiation experiments on ZnO thin films are reported. The structural, optical, luminescent and vibrational properties of the samples were investigated by X-ray diffraction (XRD), transmittance, photoluminescence (PL) and Raman measurements. XRD results show that the crystalline of the irradiated films was improved. The (002) peaks of irradiated ZnO films shift to. higher 20 angles due to the stress relaxation in the case of laser beam irradiation. From optical transmittance spectra, all films exhibit high transmittance in the visible range, the optical band edge of irradiated films showed a redshift compared with that of as-grown films. Compared with the as-grown films, the photoluminescence emission (in particular the relative intensities of visible emissions) intensities of irradiated samples enhanced. In the Raman scattering spectral both the A I. and E modes exhibited slight Raman blueshift. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HfO2 films were deposited by electron beam evaporation with different deposition parameters. The properties such as refractive index, weak absorption, and laser induced damage thresholds (LIDTs) of these films have been investigated. It was found that when pulsed Nd:YAG 1064 nm laser is used to investigate LIDT of films: Metallic character is the main factor that influences LIDTs of films obtained from Hf starting material by ion-assisted reaction, and films prepared with higher momentum transfer parameter P have fewer metallic character; The ion-assisted reaction parameters are key points for preparing high LIDT films and if the parameters are chose properly, high LIDT films can be obtained. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ta2O5 films were deposited using the conventional electron beam evaporation method and then annealed at temperatures in the range 373-673 K. Chemical composition, scattering and absorption were examined by X-ray photoelectron spectroscopy (XPS), total integrated scattering (TIS) measurement and the surface thermal lensing (m) technique, respectively. The laser-induced damage threshold (LIDT) was assessed using the output from an Nd:YAG laser with a pulse length of 12 ns. The results showed that the improvement of the LIDT after annealing was due to the reduced substoichiometric and structural defects present in the film. The LIDT increased slightly below 573K and then increased significantly with increase in annealing temperature, which could be attributed to different dominant defects. Moreover, the root mean square (RMS) roughness and scattering had little effect on the LIDT, while the absorption and the LIDT were in accord with a general relation. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A distributed feedback laser with the sampled grating has been designed and fabricated. The typical threshold current of the sampled grating based DFB laser is 32 mA, and the output power is about 10mW at the injected current of 100 mA. The lasing wavelength is 1.5564 mu m, which is the -1(st) order mode of the sampled grating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, the single mode operation of a Fabry-Perot laser (FP-LD) subject to the optical injection from a tunable laser is investigated. The maximum side mode suppression ratio (SMSR) is 53 dB, and the locked wavelength range is about 46 nm, which can cover 58 International Telecommunication Union (ITU) wavelengths with 100 GHz spacing or 115 ITU wavelengths with 50 GHz spacing for wavelength division multiplexing (WDM) system. In the wavelength range front 1535 to 1569 nm, the SMSR is over 46 dB, and the frequency response of the injection-locked FP-LD can be improved with the proper wavelength detuning. (c) 2008 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal effects will make chip temperature change with bias current of semiconductor lasers, which results in inaccurate intrinsic response by the conventional subtraction method. In this article, an extended subtraction method of scattering parameters for characterizing adiabatic responses of laser diode is proposed. The pulsed injection operation is used to determine the chip temperature of packaged semiconductor laser, and an optimal injection condition is obtained by investigating the dependence of the lasing wavelength on the width and period of the injection pulse in a relatively wide temperature range. In this case, the scattering parameters of laser diode are measured on adiabatic condition and the adiabatic intrinsic responses of packaged laser diode are first extracted. It is found that the adiabatic intrinsic responses are evidently superior to those without thermal consideration. The analysis results indicate that inclusion of thermal. effects is necessary to acquire accurate intrinsic responses of semiconductor lasers. (C) 2008 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We fabricate and investigate two-dimensional photonic crystal H3 microcavities in an InGaAsP slab. The lasing action at room temperature is observed. The lasering threshold is 7mW under the pulsed pump of 0.75% duty cycle. The Q factor and the lasing mode characteristics are simulated by three-dimensional finite difference time domain method. The simulation result matches well with the experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the 1.58 mu m emission at room temperature from a metamorphic In0.6Ga0.4As quantum well laser grown on GaAs by molecular beam epitaxy. The large lattice mismatch was accommodated through growth of a linearly graded buffer layer to create a high quality virtual In0.32Ga0.68As substrate. Careful growth optimization ensured good optical and structural qualities. For a 1250x50 mu m(2) broad area laser, a minimum threshold current density of 490 A/cm(2) was achieved under pulsed operation. This result indicates that metamorphic InGaAs quantum wells can be an alternative approach for 1.55 mu m GaAs-based lasers. (C) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A discretely tunable Er-doped fiber-ring laser using a fiber Mach-Zehnder interferometer (MZI) and a tunable fiber Bragg grating (FBG) is proposed. In this scheme, the combination of MZI and FBG acts as a discrete wavelength selector. Analysis of its transmission function shows that discrete wavelength tuning can be realized, and experiments demonstrate 64 single-mode outputs with a mode spacing of 181.7 pm, and the output power is quite stable in the whole tuning range. (C) 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51 2595-2598, 2009; Published online in Wiley InterScience (www. interscience.wiley.com). DOI 10.1002/mop.24690

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pulsed InGaAsP-Si hybrid laser is fabricated using metal bonding. A novel structure in which the optical coupling and metal bonding areas are transversely separated is employed to integrate the silicon waveguide with an InGaAsP multi-quantum well distributed feedback structure. When electrically pumped at room temperature, the laser operates with a threshold current density of 2.9 kA/cm(2) and a slope efficiency of 0.02 W/A. The 1542 nm laser output exits mainly from the Si waveguide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reduced divergence angle of the photonic crystal vertical-cavity surface-emitting laser (PC-VCSEL) was investigated in both theory and experiment. The photonic crystal waveguide possessed the weakly guiding waveguide characteristic, which accounted for the reduction of the divergence angle. The three-dimensional finite-difference time-domain method was used to simulate the designed PC-VCSEL, and a calculated divergence angle of 5.2 degrees was obtained. The measured divergence angles of our fabricated PC-VCSEL were between 5.1 degrees and 5.5 degrees over the entire drive current range, consistent with the numerical results. This is the lowest divergence angle of the fabricated PC-VCSEL ever reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emission wavelength of a GaInNAs quantum well (QW) laser was adjusted to 1310 nm, the zero dispersion wavelength of optical fibre, by an appropriate choice of QW composition and thickness and N concentration in the barriers. A triple QW design was employed to enable the use of a short cavity with a small photon lifetime while having sufficient differential gain for a large modulation bandwidth. High speed, ridge waveguide lasers fabricated from high quality material grown by molecular beam epitaxy exhibited a damped modulation response with a bandwidth of 13 GHz.