303 resultados para DOUBLE CAPTURE
Resumo:
The magnetocapacitive response of a double-barrier structure (DBS), biased beyond resonances, has been employed to determine the density of states (DOS) of the two-dimensional electron gas residing in the accumulation layer on the incident side of the DBS. An adequate procedure is developed to compare the model calculation of the magnetocapacitance with the experimental C vs B curves measured at different temperatures and biases. The results show that the fitting is not only self-consistent but also remarkably good even in well-defined quantum Hall regimes. As a result, information about the DOS in strong magnetic fields could reliably be extracted.
Resumo:
By using a transfer-matrix method on the basis of two-dimensional (2D) Bloch sums in accordance with a tight-binding scheme, a self-consistent calculation on the resonant tunneling in asymmetric double-barrier structures is presented, in which contributions to resonant tunneling from both three-dimensional (3D) electrons in the contacts and 2D electrons in the spacer or accumulation layers are considered simultaneously. The charge buildup effect on the current versus voltage (I-V) curves is evaluated systematically, showing quantitatively how it results in the I-V bistability and enhanced differences between I-V curves for positive and negative bias in an asymmetric double-barrier structure. Special attention is focused on the interaction between 3D-2D and 2D-2D resonant-tunneling processes, including the suppression of 2D-2D resonant tunneling by the charge buildup in the well accompanying the 3D-2D resonant tunneling. The effects of the emitter doping condition (doping concentration, spacer thickness) on the presence of two types of quasi-2D levels in the emitter accumulation layers, and on the formation of a potential bulge in the emitter region, are discussed in detail in relation to the tunneling process.
Resumo:
Two samples of nominal 20-period Ge0.20Si0.80(5 nm)/Si(25 nm) and Ge0.5Si0.5(5 nm)/Si(25 nm) strained-layer superlattices (SLSs) were studied by the double-crystal X-ray diffraction method. It is convenient to define the perpendicular strains relative to the average crystal. Computer simulations of the rocking curves were performed using a kinematical step model. An excellent agreement between the measured and simulated satellite patterns is achieved. The dependence of the sensitivity of the rocking curves to the structural parameters of the SLS, such as the alloying concentration x and the layer thicknesses and the L component of the reflection g = (HKL), are clearly demonstrated.
Resumo:
Nonresonant electron tunneling between asymmetric double quantum wells in AlxGa1-xAs/GaAs systems has been investigated by using steady-state and time-resolved photoluminescence spectra. Experimental evidence of LO-phonon-assisted tunneling through thick barriers has been obtained by enhancing excitation power densities or applying electric fields perpendicular to the well plane. LO-phonon-assisted tunneling times have also been estimated from the variation of the decay time of the narrow-well photoluminescence with applied electric fields. Our findings suggest that LO phonons in the barriers play an important role in the tunneling transfer.
Resumo:
A scattering process modeled by an imaginary potential V(I) in the wide well of an asymmetric double quantum well structure (DQWS) is used to model the electron tunneling from the narrow well. Taking V(I) approximately -5 meV, the ground resonant level lifetimes of the narrow well in the DQWS are in quantitative agreement with the experimental resonance and non-resonance tunneling times. The corresponding scattering time 66 fs is much faster than the intersubband scattering time of LO-photon emission.
Resumo:
GaAs epilayer films on Si substrates grown by molecular-beam epitaxy were investigated by the x-ray double-crystal diffraction method. The rocking curves were recorded for different diffraction vectors of samples. The results show that the unit-cell volumes of GaAs epilayers are smaller than that of the GaAs bulk material. The strained-layer superlattice buffer layer can improve the quality of the film, especially in the surface lamella. The parameter W' = W(expt)/(square-root \gamma-h\/gamma-0/sin 2-theta-B) is introduced to describe the quality of different depths of epilayers. As the x-ray incident angle is increased, W' also increases, that is, the quality of the film deteriorates with increasing penetration distance of the x-ray beam. Therefore, W' can be considered as a parameter that describes the degree of perfection of the epilayer along the depth below the surface. The cross-section transmission electron microscopy observations agree with the results of x-ray double-crystal diffraction.