239 resultados para semiconductor III-V material
Resumo:
In this paper, we report on the design, growth and fabrication of 980nm strained InGaAs quantum well lasers employing novel material system of Al-free active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in laser structure design, improvement of surface morphology and laser performance. We demonstrate an optimized broad-waveguide structure for obtaining high power 980nm quantum well lasers with low vertical beam divergence. The laser structure was grown by low-pressure metalorganic chemical vapor deposition, which exhibit a high internal quantum efficiency of similar to 90% and a low internal loss of 1.5-2.5 cm(-1). The broad-area and ridge-waveguide laser devices are both fabricated. For 100 mu m wide stripe lasers with cavity length of 800 mu m, a low threshold current of 170mA, a high slope efficiency of 1.0W/A and high output power of more than 3.5W are achieved. The temperature dependences of the threshold current and the emitting spectra demonstrate a very high characteristic temperature coefficient (T-o) of 200-250K and a wavelength shift coefficient of 0.34nm/degrees C. For 4 mu m-width ridge waveguide structure laser devices, a maximum output power of 340mW with GOD-free thermal roll-over characteristics is obtained.
Resumo:
Phthalocyanato tin(IV) dichloride, an axially dichloriniated MPc, is an air-stable high performance n-type organic semiconductor with a field-effect electron mobility of up to 0.30 cm(2) V-1 s(-1). This high mobility together with good device stability and commercial availability makes it a most suitable n-type material for future organic thin-film transistor applications.
Resumo:
We investigated electrical properties of vanadyl phthalocyanine (VOPc) metal-insulator-semiconductor (MIS) devices by the measurement of capacitance and conductance, which were fabricated on ordered para-sexiphenyl (p-6P) layer by weak epitaxy growth method. The VOPc/p-6P MIS diodes showed a negligible hysteresis effect at a gate voltage of +/- 20 V and small hysteresis effect at a gate voltage of +/- 40 V due to the low interface trap state density of about 1x10(10) eV(-1) cm(-2). Furthermore, a high transition frequency of about 10 kHz was also observed under their accumulation mode. The results indicated that VOPc was a promising material and was suitable to be applied in active matrix liquid crystal displays and organic logic circuits.
Resumo:
The title compound, [NH3CH2CH2CH2NH2][NH3CH2CH2CH2NH3](2)[As-2(III) As-v Mo-8 V-4(IV) O-40] (.) 5H(2)O, was hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. Crystal data: monoclinic, C2/c, a = 45.375(9) Angstrom, b = 11.774(2) Angstrom, c = 23.438(5) Angstrom, beta = 96.62(3)degrees. X-ray crystallographic study showed that the crystal structure was constructed by bi-capped alpha -Keggin fragments [(As2AsMo8V4O40)-As-III-Mo-v-O-IV](5-) polyoxoanion. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
An experimental setup and the procedure for the laser resonant ionization mass spectrometry (RIMS) have been described. Both an optical spectrum and a mass spectum have been shown. The detection limit that can be reached by using this procedure has been estimated.
Resumo:
Based on the complex crystal chemical bond theory, the formula of Liu and Cohen's, which is only suitable for one type of bond, has been extended to calculate the bulk modulus of ternary chalcopyrite A(I)B(III)C(2)(VI) and A(II)B(IV)C(2)(V) which contains two types of bonds. The calculated results are in fair agreement with the previous theoretical values reported and experimental values. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Diluted magnetic semiconductor (Ga,Mn)N were prepared by the implantation of Mn ions into GaN/Al2O3 substrate. Clear X-ray diffraction peak from (Ga,Mn)N is observed. It indicates that the solid solution (Ga,Mn)N phase was formed with the same lattice structure as GaN and different lattice constant. Magnetic hysteresis-loops of the (Ga,Mn)N were obtained at room temperature (293 K) with the coercivity of about 2496.97 A m(-1). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We propose a scheme for realizing negative refractive index in a V-type four-level atomic system. It is shown that the negative refractive index can be achieved in a wide frequency band based on the effect of quantum coherence. It is also found that the frequency band of negative refractive index and the absorption property of left-handed material are manipulated by the pump and control fields. Furthermore, left-handed material with reduced absorption is possible by choosing appropriate parameters. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The origin of the transverse relaxation time in optically excited semiconductor quantum wells is investigated based on the vector property of the interband transition matrix elements. The dephasing rate due to carrier-carrier (CC) scattering is found to be equal to half of the common momentum relaxation rate. The analytical expression of the polarization dephasing due to CC scattering in two-dimension is established and the dependence of the dephasing rate Gamma(cc) on the carrier density N is determined to be Gamma(cc) = constant (.) N-1/2, which is used to explain the experimental results and provides a promising physical picture. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
4H-silicon carbide (SiC) metal-semiconductor-metal (MSM) ultraviolet (UV) photodetectors with Al2O3/SiO2 (A/S) films employed as antireflection/passivation layers have been demonstrated. The devices showed a peak responsivity of 0.12 A/W at 290 nm and maximum external quantum efficiency of 50% at 280 nm under 20 V electrical bias, which were much larger than conventional MSM detectors. The redshift of peak responsivity and response restriction effect were found and analyzed. The A/S/4H-SiC MSM photodetectors were also shown to possess outstanding features including high UV to visible rejection ratio, large photocurrent, etc. These results demonstrate A/S/4H-SiC photodetectors as a promising candidate for OEIC applications. (C) 2008 American Institute of Physics.
Resumo:
The idler is separated from the co-propagating pump in a degenerate four-wave mixing (DFWM) with a symmetrical parametric loop mirror (PALM), which is composed of two identical SOAs and a 70 m highly-nonlinear photonic crystal fiber (HN-PCF). The signal and pump are coupled into the symmetrical PALM from different ports, respectively. After the DFWM based wavelength conversion (WC) in the clockwise and anticlockwise, the idler exits from the signal port, while the pump outputs from its input port. Therefore, the pump is effectively suppressed in the idler channel without a high-speed tunable filter. Contrast to a traditional PALM, the DFWM based conversion efficiency is increased greatly, and the functions of the amplification and the WC are integrated in the smart SOA and HN-PCF PALM. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We investigate theoretically CdTe quantum dots containing a single Mn2+ impurity, including the sp-d exchange interaction between carriers and the magnetic ion and the short-range exchange interaction between electron and hole. We find anticrossing behaviors in the energy spectrum of the electron-hole (e-h) pair that arise from the interplay between exchange interactions and the magnetic field. In addition to the s-d exchange interaction, we find that other mechanisms inducing the anticrossings become important in the strong heavy hole-light hole (hh-lh) mixing regime. The transition strengths between the states with spin projection of Mn2+ ion S-z not equal -5/2 (S-z = -5/2) decrease (increase) with increasing magnetic fields due to the alignment of the Mn2+ spin. The spin splitting of the e-h pair states depends sensitively on the external magnetic and electric field, which reveals useful information about the spin orientation and position of the magnetic ion. Meanwhile, the manipulation of the position of the magnetic ion offers us a way to control the spin splitting of the carriers. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We investigate the couplings between different energy band valleys in a metal-oxide-semiconductor field-effect transistor (MOSFET) device using self-consistent calculations of million-atom Schrodinger-Poisson equations. Atomistic empirical pseudopotentials are used to describe the device Hamiltonian and the underlying bulk band structure. The MOSFET device is under nonequilibrium condition with a source-drain bias up to 2 V and a gate potential close to the threshold potential. We find that all the intervalley couplings are small, with the coupling constants less than 3 meV. As a result, the system eigenstates derived from different bulk valleys can be calculated separately. This will significantly reduce the simulation time because the diagonalization of the Hamiltonian matrix scales as the third power of the total number of basis functions. (C) 2008 American Institute of Physics.