262 resultados para buffer layer
Resumo:
Space ordered 1.3μm self-assembled InAs QDs are grown on GaAs(100) vicinal substrates by MOCVD. Photoluminescence measurements show that the dots on vicinal substrates have a much higher PL intensity and a narrower FWHM than those of dots on exact substrates, which indicates better material quality. To obtain 1.3μm emissions of InAs QDs, the role of the so called InGaAs strain cap layer (SCL) and the strain buffer layer (SBL) in the strain relaxation process in quantum dots is studied. While the use of SBL results only in a small change of emission wavelength,SCL can extend the QD's emission over 1.3μm due to the effective strain reducing effect of SCL.
Resumo:
50mm SiC films with high electrical uniformity are grown on Si(111) by a newly developed vertical low-pressure chemical vapor deposition (LPCVD) reactor.Both in-situ n- and p-type doping of 3C-SiC are achieved by intentional introduction of ammonia and boron into the precursor gases.The dependence of growth rate and surface morphology on the C/Si ratio and optimized growth conditions is obtained.The best electrical uniformity of 50mm 3C-SiC films obtained by non-contact sheet resistance measurement is ±2.58%.GaN films are grown atop the as-grown 3C-SiC/Si(111) layers using molecular beam epitaxy (MBE).The data of both X-ray diffraction and low temperature photoluminescence of GaN/3C-SiC/Si(111) show that 3C-SiC is an appropriate substrate or buffer layer for the growth of Ⅲ-nitrides on Si substrates with no cracks.
Resumo:
In order to improve crystal quality for growth of quaternary InAlGaN, a series of InAlGaN films were grown on GaN buffer layer under different growth temperatures and carrier gases by low-pressure metal-organic vapor phase epitaxy. Energy dispersive spectroscopy (EDS) was employed to measure the chemical composition of the quaternary, high resolution X-ray diffraction (HRXRD) and photoluminescence (PL) technique were used to characterize structural and optical properties of the epilayers, respectively. The PL spectra of InAlGaN show with and without the broad-deep level emission when only N2 and a N2+H2 mixture were used as carrier gas, respectively. At pressure of 1.01×104 Pa and with mixed gases of nitrogen and hydrogen as carrier gas, different alloy compositions of the films were obtained by changing the growth temperature while keeping the fluxes of precursors of indium (In), aluminum (Al), gallium (Ga) and nitrogen (N2) constant. A combination of HRXRD and PL measurements enable us to explore the relative optimum growth parameters-growth temperature between 850℃ and 870℃,using mixed gas of N2+H2 as carrier gas.
Resumo:
We proposed a new method to suppress the crystallographic tilt in the lateral epitaxial overgrowth of GaN by using an oxide mask with a newly designed pattern. A rhombus mask with edges oriented in the direction of <10 - 10>(GaN) was used instead of the traditional stripe mask. The morphology evolution during the LEO GaN with the rhombus mask was investigated by SEM, and the crystallographic tilt in the LEO GaN was measured by DC-XRD. It is found that using the new rhombus mask can decrease the crystallographic tilt in the LEO GaN. In addition, this method makes the ELO GaN stripes easy to coalesce. (C) 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microstructural and compositional characteristics of GaN films grown on a ZnO-buffered Si(111) wafer
Resumo:
Polycrystalline GaN thin films have been deposited epitaxially on a ZnO-buffered (111)-oriented Si substrate by molecular beam epitaxy. The microstructural and compositional characteristics of the films were studied by analytical transmission electron microscopy (TEM). A SiO2 amorphous layer about 3.5 nm in thickness between the Si/ZnO interface has been identified by means of spatially resolved electron energy loss spectroscopy. Cross-sectional and plan-view TEM investigations reveal (GaN/ZnO/SiO2/Si) layers exhibiting definite a crystallographic relationship: [111](Si)//[111](ZnO)//[0001](GaN) along the epitaxy direction. GaN films are polycrystalline with nanoscale grains (similar to100 nm in size) grown along [0001] direction with about 20degrees between the (1 (1) over bar 00) planes of adjacent grains. A three-dimensional growth mode for the buffer layer and the film is proposed to explain the formation of the as-grown polycrystalline GaN films and the functionality of the buffer layer. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Metamorphic high electron mobility transistor (M-HEMT) structures have been grown on GaAs substrates by molecular beam epitaxy (MBE). Linearly graded and the step-graded InGaAs and InAlAs buffet layers hal e been compared, and TEM, PL and low-temperature Hall have been used to analyze the properties of the buffer layers and the M-HEMT structure. For a single-delta-doped M-HEMT structure with an In0.53Ga0.47As channel layer and a 0.8 mum step-graded InAlAs buffer layer, room-temperature mobility of 9000 cm(2)/V s and a sheet electron density as high as 3.6 x 10(12)/cm(2) are obtained. These results are nearly equivalent to those obtained for the same structure grown on an InP substrate. A basic M-HEMT device with 1 mum gate was fabricated, and g(m) is larger than 400 mS/mm. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Cubic GaN/GaAs(0 0 1) epilayers and hexagonal inclusions are characterized by X-ray diffraction (XRD), Photoluminescence (PL), Raman spectroscopy, and transmission electron microscopy (TEM). The X-ray {0 0 0 2} and (1 0 (1) over bar 0) pole figures show that the orientation relationships between cubic GaN and hexagonal inclusions are (1 1 1)//(0 0 0 1), <1 1 2 >//<1 0 (1) over bar 0 >. The distribution of hexagonal inclusions mainly results from the interfacial bonding disorder in the grain boundaries parallel to hexagonal <0 0 0 1 > directions and the lattice mismatch in <0 0 0 1 > directions on {1 0 (1) over bar 0} planes. In order to reduce the energy increase in cubic epilayers, hexagonal lamellas with smaller sizes in <0 0 0 1 > directions often nucleate inside the buffer layer or near the interface between the buffer layer and the epitaxial layer, and penetrate through the whole epitaxial layer with this orientation relationship. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The effects of in situ annealing treatment in the initial growth stage and In-doping during growth of the GaN on the material properties were investigated. GaN was grown by LP-MOVPE. In situ annealing reduced the full-width at half-maximum (FWHM) of X-ray rocking curves and reduced etch pit density of GaN films. It improved the optical properties of the epilayer. Undoped and In-doped GaN films of initial growth stage were investigated. It was found that morphology and optical properties were improved in In-doped samples. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Cubic GaN(c-GaN) films are grown on GaAs(001) substrates by metalorganic chemical vapor deposition (MOCVD). Two GaN samples were grown with different buffer layer, the deposition time of each was 1 and 3 min, respectively. 4-circle X-ray double crystal diffraction (XRDCD) was used to study the secondary crystallographic phases presented in the c-GaN films. The phase composition of the epilayers was determined by X-ray reciprocal space mapping. The intensities of the c-GaN(002) and h-GaN(10 (1) over bar 1) planes detected in the mapping were investigated by omega scans. The content of the hexagonal phase inclusions in the c-GaN films was calculated to about 1.6 and 7.9%, respectively. The thicker buffer layer is not preferable for growing high quality pure c-GaN films. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Herein, an insulating fluorinated polyimide (F-PI) is utilized as an ultrathin buffer layer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in polymer light-emitting diodes to enhance the device performance. The selective solubility of F-PI in common solvents avoids typical intermixing interfacial problems during the sequential multilayer spin-coating process. Compared to the control device, the F-PI modification causes the luminous and power efficiencies of the devices to be increased by a factor of 1.1 and 4.7, respectively, along with almost 3-fold device lifetime enhancement. Photovoltaic measurement, single-hole devices, and X-ray photoelectron spectroscopy, are utilized to investigate the underlying, mechanisms, and it is found that the hole injection barrier is lowered owing to the interactions between the PEDOT:PSS and F-PI. The F-PI modified PEDOT:PSS layer demonstrates step-up ionization potential profiles from the intrinsic bulk PEDOT:PSS side toward the F-PI-modified PEDOT:PSS surface, which facilitate the hole injection.
Resumo:
Efficient inverted top-emitting organic light-emitting diodes with aluminum (Al) as both the cathode and semitransparent anode are investigated. It is found that introduction of the ultrathin molybdenum trioxide (MoO3)/fullerene (C-60) bilayer structure between the low work function Al top anode and the hole-transporting layer dramatically enhances the device performance as compared to the devices with sole MoO3 or C-60 buffer layer. The ultraviolet photoemission spectroscopy and x-ray photoelectron spectroscopy indicate that the hole injection barrier between Al anode and hole-transporting layer is effectively reduced via strong dipole effect at Al/MoO3/C-60 interfaces with its direction pointing from Al to C-60.
Resumo:
We fabricated efficient top-emitting organic light-emitting diodes (OLEDs) with silver (Ag) as an anode and samarium (Sm) as a semi-transparent cathode. The hole-injection barrier at the Ag anode/hole transporter interface is reduced by inserting a buffer layer of vanadium oxide (V2O5) between them. The ultraviolet photoelectron spectroscopy analysis shows that the hole-injection barrier is reduced by 0.5 eV. Both the V2O5 thickness and the organic layer thickness are optimized. The optimized device achieves a maximum current efficiency of 5.46 cd A(-1) and a power efficiency of 3.90 lm W-1, respectively.
Resumo:
Polyfluorene (PF) is a class of typical blue electroluminescent (EL) material, but it exhibits undesired feature in the green spectral region under operation condition. We investigated the spectral properties of different device structures of poly(9,9-dioctylfluorene) (PFO)-based light-emitting diodes, and found that the interaction between cathode and PFO is the main origination of green emission in EL devices. The general method of inserting a buffer layer between the PFO and cathode can decrease the low energy band emission to purify the color and improve the EL performance of devices.
Resumo:
Lithium acetylacetonate [Li(acac)] covered with aluminium was used as an efficient electron injection layer in organic light-emitting devices (OLEDs) consisting of NPB as the hole transport layer and Alq(3) as the electron transport and light emitting layer, resulting in lower turn- on voltage and increased current efficiency. The turn- on voltage (the voltage at a luminance of 1 cd m(-2)) was decreased from 5.5 V for the LiF/Al and 4.4 V for Ca/Al to 4.0 V for Li(acac)/Al, and the device current efficiency was enhanced from 4.71 and 5.2 to 7.0 cd A(-1). The performance tolerance to the layer thickness of Li(acac) is also better than that of the device with LiF. LiF can only be used when deposited as an ultra- thin layer because of its highly insulating nature, while the Li(acac) can be as thick as 5 nm without significantly affecting the EL performance. We suppose that the free lithium released from Li(acac) improves the electron injection when Li(acac) is covered with an Al cathode.
Resumo:
An efficient cathode NaCl/Ca/Al used to improve the performance of organic light-emitting devices (OLEDs) was reported. Standard NM-bis(1-naphthyl)-NAP-diphenyl-1,1' biphenyl 4,4'-dimaine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq(3)) devices with NaCl/Ca/Al cathode showed dramatically enhanced electroluminescent (EL) efficiency. A power efficiency of 4.6 lm/W was obtained for OLEDs with 2 nm of NaCl and 10 nm of Ca, which is much higher than 2.0 lm/W, 3.1 lm/W, 2.1 lm/ W and 3.6 lm/W in devices using, respectively, the LiF (1 nm)/Al, LiF (1 nm)/Ca (10 nm)/Al, Ca (10 nm)/Al and NaCl (2 nm)/ Al cathodes. The investigation of the electron injection in electron-only devices indicates that the utilization of the NaCl/Ca/Al cathode substantially enhances the electron injection current, which in case of OLEDs leads to the improvement of the brightness and efficiency.