168 resultados para Silicon carbide.
Resumo:
Preferred growth of nanocrystalline silicon (nc-Si) was first found in boron-doped hydrogenated nanocrystalline (nc-Si:H) films prepared using plasma-enhanced chemical vapor deposition system. The films were characterized by high-resolution transmission electron microscope, X-ray diffraction (XRD) spectrum and Raman Scattering spectrum. The results showed that the diffraction peaks in XRD spectrum were at 2theta approximate to 47degrees and the exponent of crystalline plane of nc-Si in the film was (220). A considerable reason was electric field derived from dc bias made the bonds of Si-Si array according to a certain orient. The size and crystalline volume fraction of nc-Si in boron-doped films were intensively depended on the deposited parameters: diborane (B2H6) doping ratio in silane (SiH4), silane dilution ratio in hydrogen (H-2), rf power density, substrate's temperature and reactive pressure, respectively. But preferred growth of nc-Si in the boron-doped nc-Si:H films cannot be obtained by changing these parameters. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A thermo-optic Mach-Zehnder (MZ) variable optical attenuator based on silicon waveguides with a large cross section was designed and fabricated on silicon-on-insulator (SOI) wafer. Multimode interferometers were used as power splitters and combiners in the MZ structure. In order to achieve a smooth interface, anisotropic chemical etching of silicon was used to fabricate the waveguides. Isolating grooves were introduced to reduce power consumption and device length. The device has a low power consumption of 210 mW and a response time of 50 mus. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Er photoluminescence (Er PL) and dangling bonds (DBs) of annealed Er-doped hydrogenated amorphous silicon nitride (a-SiN:H(Er)) with various concentrations of nitrogen are studied in the temperature range 62-300 K. Post-annealing process is employed to change the DBs density of a-SiN:H(Er). PL spectra, DBs density and H, N concentrations are measured. The intensity of Er PL displays complicated relation with Si DBs density within the annealing temperature range 200-500 degreesC. The intensity of Er PL first increases with decreasing density of Si dangling bonds owing to the structural relaxation up to 250 degreesC, and continues to increase up to 350 degreesC even though the density of Si DBs increases due to the improvement of symmetry environment of Er3+. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Single-mode condition for silicon rib waveguides with trapezoidal cross-section was obtained using a numerical method based on imaginary-distance beam propagation method with non-uniform discretization. Both quasi-transverse-electric and quasi-transverse-magnetic modes were investigated. Simulated single-mode condition is given by a modified equation. Comparison with reported results shows that the Marcatili's method is in a better agreement with our results. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A 3-dB multimode interference optical coupler based on rib waveguides with trapezoidal cross section was designed and fabricated on silicon-on-insulator wafer. Potassium hydroxide (KOH) anisotropic chemical etching of silicon was used to fabricate the waveguides to obtain smooth interface. A modified finite-difference beam propagation method was used to simulate the multimode rib waveguide with slope interfaces. The rms roughness of etching interface is as small as 1.49 nm. The propagation loss of the waveguide is 1.3 dB/cm at wavelength of 1.55 mum. The fabricated 3-dB coupler has a good uniformity of 0.2 dB.
Resumo:
Based on free carrier plasma dispersion effect, a 2 x 2 optical switch is fabricated in a silicon-on-insulator substrate by inductively coupled-plasma technology and ion implantation. The device has a Mach-Zehnder interferometer structure, in which two directional couplers serve as the power splitter and combiner. The switch presents an insertion loss of 3.04 dB and a response time of 496 ns.
Resumo:
In our work, nitrogen ions were implanted into separation-by-implantation-of-oxygen (SIMOX) wafers to improve the radiation hardness of the SIMOX material. The experiments of secondary ion mass spectroscopy (SIMS) analysis showed that some nitrogen ions were distributed in the buried oxide layers and some others were collected at the Si/SiO2 interface after annealing. The results of electron paramagnetic resonance (EPR) suggested the density of the defects in the nitrided samples changed with different nitrogen ion implantation energies. Semiconductor-insulator-semiconductor (SIS) capacitors were made on the materials, and capacitance-voltage (C-V) measurements were carried out to confirm the results. The super total dose radiation tolerance of the materials was verified by the small increase of the drain leakage current of the metal-oxide-semiconductor field effect transistor with n-channel (NMOSFETs) fabricated on the materials before and after total dose irradiation. The optimum implantation energy was also determined.
Resumo:
A novel design of out-of-plane grating couplers is proposed for coupling between silicon-on-insulator nanophotonic waveguides and single-mode fibres. The coupler with the first-order diffraction coupling to the optical fibre is actually a second-order reflected grating with two times of period of the first-order grating. To enhance outcoupled power, a back hole is designed to form in the silicon substrate and a kind of metals is placed on the top acting as a reflection layer. The coupler is optimized using coupled-mode- based simulations, showing that, the coupling efficiency to and from tapered optical fibre can be as high as 85% with 1 dB bandwidth about 23nm.
Resumo:
A folding nonblocking 4 X 4 optical matrix switch in simplified-tree architecture was designed and fabricated on a silicon-on-insulator wafer. To compress chip size, switch elements (SEs) were connected by total internal reflection mirrors instead of conventional S-bends. For obtaining smooth interfaces, potassium hydroxide (KOH) anisotropic chemical etching of silicon was employed. The device has a compact size of 20 X 3.2 mm(2) and a fast response of 8 +/- 1 mu s. Power consumption of 2 x 2 SE and excess loss per mirror were 145 mW and -1.1 dB, respectively. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A thermo-optic variable optical attenuator module composed of a silicon-on-insulator attenuator chip and driving circuit was designed and fabricated. The module exhibited a maximum attenuation of 21.8 dB and a response time of 10 mu s. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A series of hydrogenated silicon films near the threshold of crystallinity was prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) from a mixture of SiH4 diluted in H, The effect of hydrogen dilution ratios R-H = [H-2]/[SiH4] on microstructure of the films was investigated. Photoelectronic properties and stability of the films were studied as a function of crystalline fraction. The results show that more the crystalline volume fraction in the silicon films, the higher mobility life-time product (mu tau), better the stability and lower the photosensitivity. Those diphasic films contained 8%-31% crystalline volume fraction can gain both the fine photoelectronic properties and high stability. in the diphasic (contained 12% crystalline volume fraction) solar cell, we obtained a much lower light-induced degradation of similar to 2.9%, with a high initial efficiency of 10.01% and a stabilized efficiency of 9.72% (AM1.5, 100 mW/cm(2)). (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A Si resonant-cavity-enhanced (RCE) photodiode was fabricated on a silicon membrane. The Si membrane was formed by etching from the back side of the silicon-on-insulator substrate with the buried SiO2 layer as etch-stop layer. A gold layer was deposited serving as an electrode layer and bottom mirror of the RCE photodiode. The photodiode had an external quantum efficiency of 33.8% at the resonant wavelength of 848 nm and a full width at half maximum (FWHM) of 17 nm. The responsivity was 4.6 times that of a conventional Si p-i-n photodiode with the same absorption layer thickness. (c) 2005 American Institute of Physics.
Resumo:
A rearrangeable nonblocking thermo-optic 4 x 4 switching matrix is demonstrated. The matrix, which consists of five 2 x 2 multimode interference-based Mach-Zehnder interferometer (MMI-MZI) switch elements, is fabricated in silicon-on-insulator waveguide system. The average excess loss for the optical path experiencing 2 and 3 switch elements is 6.6 and 10.1 dB respectively. The crosstalk in the matrix is measured to be between -12 and -19 dB. The switching time of the device is less than 30 mu s.
Resumo:
A series of hydrogenated silicon films near the threshold of crystallinity was prepared by very high frequency plasmaenhanced chemical vapor deposition (VHF-PECVD)from a mixture of SiH4 diluted in H-2. The effect of hydrogen dilution ratios R = [H-2]/[SiH4] on the microstructure of the films was investigated. The photoelectronic properties and stability of the films were studied as a function of crystalline fraction. The results show that the diphasic films gain both the fine photoelectric properties like a-Si: H and high stability like mu w-Si:H. By using the diphasic silicon films as the intrinsic layer, p-i-n junction solar cells were prepared. Current-voltage (J-V) characteristics and stability of the solar cells were measured under an AM1.5 solar simulator. We observed a light-induced increase of 5.2% in the open-circuit voltage (V-oc) and a light-induced degradation of similar to 2.9% inefficiency.
Resumo:
Based on our experimental research on diphasic silicon films, the parameters such as absorption coefficient, mobility lifetime product and bandgap were estimated by means of effective-medium theory. And then computer simulation of a-Si: H/mu c-Si: H diphasic thin film solar cells was performed. It was shown that the more crystalline fraction in the diphasic silicon films, the higher short circuit density, the lower open-circuit voltage and the lower efficiency. From the spectral response, we can see that the response in long wave region was improved significantly with increasing crystalline fraction in the silicon films. Taking Lambertian back refraction into account, the diphasic silicon films with 40%-50% crystalline fraction was considered to be the best intrinsic layer for the bottom solar cell in micromorph tandem.