242 resultados para Li niobate thin films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectroscopy technique has been performed to investigate the stress induced in as-grown silicon-on-sapphire (SOS), solid-phase-epitaxy (SPE) re-grown SOS, and Si/gamma-Al2O3/Si double-heteroepitaxial thin films. It was demonstrated that the residual stress in SOS film, arising from mismatch and difference of thermal expansion coefficient between silicon and sapphire, was reduced efficiently by SPE process, and that the stress in Si/gamma-Al2O3/Si thin film is much smaller than that of as-grown SOS and SPE upgraded SOS films. The stress decrease for double heteroepitaxial film Si/gamma-Al2O3/Si mainly arises from the smaller lattice mismatching of 2.4% between silicon top layer and the gamma-Al2O3/Si epitaxiial composite substrate, comparing with the large lattice mismatch of 13% for SOS films. It indicated that gamma-Al2O3/Si as a silicon-based epitaxial substrate benefits for reducing the residual stress for further growth of silicon layer, compared with on bulk sapphire substrate. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of hydrogenated amorphous silicon carbide (a-Si1-xCx:H) films were prepared by plasma-enhanced chemical vapour deposition (PECVD) using a gas mixture of silane, methane, and hydrogen as the reactive source. The previous results show that a high excitation frequency, together with a high hydrogen dilution ratio of the reactive gases, allow an easier incorporation of the carbon atoms into the silicon-rich a-Si1-xCx:H film, widen the valence controllability. The data show that films with optical gaps ranging from about 1.9 to 3.6 eV could be produced. In this work the influence of the hydrogen dilution ratio of the reactive gases on the a-Si1-xCx:H film properties was investigated. The microstuctural and photoelectronic properties of the silicon carbide films were characterized by Rutherford backscattering spectrometry (RBS), elastic recoil detection analysis (ERDA), and FT-IR spectrometry. The results show that a higher hydrogen dilution ratio enhances the incorporation of silicon atoms in the amorphous carbon matrix for carbon-rich a-Si1-xCx:H films. One pin structure was prepared by using the a-Si1-xCx:H film as the intrinsic layer. The light spectral response shows that this structure fits the requirement for the top junction of colour sensor. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work demonstrates the condition optimization during liquid phase deposition (LPD) Of SiO2/GaAs films. LPD method is further applied to form Al2O3 films on semiconductors with poison-free materials. Proceeding at room temperature with inexpensive equipment, LPD of silica and alumina films is potentially serviceable in microelectronics and related spheres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO thin films were prepared on Si (1 11) substrates at various temperatures from 250 to 700 degrees C using pulsed laser deposition (PLD) technique in order to investigate the structural and optical properties of the films. The structural and morphological properties of the films were investigated by XRD and SEM measurements, respectively. The quality of the films was improved with the increase of the temperature. By XRD patterns the FWHMs of the (0 0 2) peaks of the ZnO films became narrower when the temperatures were above 500 degrees C. The FWHMs of the peaks of (0 0 2) of the films were as narrow as about 0. 19 degrees when films were grown at 650 and 700 degrees C. This indicates the superior crystallinity of the films. The optical properties of the films were studied by photoluminescence spectra using a 325 nm He-Cd laser. The two strongest UV peaks were found at 377.9 nm from ZnO films grown at 650 and 700 degrees C. This result is consistent with that of the XRD investigation. Broad bands in visible region from 450 to 550 nm were also observed. Our works suggest that UV emissions have close relations with not only the crystallinity but also the stoichiometry of the ZnO films. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bi4Ti3O12 (BTO) and Bi3.25In0.75Ti3O12 (BTO:In) thin films were prepared on fused quartz and LaNiO3/Si (LNO) substrates by chemical solution deposition (CSD). Their microstructures, ferroelectric and optical properties were investigated by X-ray diffraction, scanning electron microscope, ferroelectric tester and UV-visible-NIR spectrophotometer, respectively. The optical band-gaps of the films were found to be 3.64 and 3.45 eV for the BTO and BTO:In films, respectively. Optical constants (refractive indexes and extinction coefficients) were determined from the optical transmittance spectra using the envelope method. Following the single electronic oscillator model, the single oscillator energy E-0, the dispersion energy E-d, the average interband oscillator wavelength lambda(0), the average oscillator strength S-0, the refractive index dispersion parameter (E-0/S-0), the chemical bonding quantity beta, and the long wavelength refractive index n(infinity) were obtained and analyzed. Both the refractive index and extinction coefficient of the BTO:In films are smaller than those of the BTO films. Furthermore, the refractive index dispersion parameter (E-0/S-0) increases and the chemical bonding quantity beta decreases in the BTO and BTO:In films compared with those of bulk. (C) 2007 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tin-doped indium oxide (ITO) thin films were prepared by reactive thermal evaporation on the glass substrates. The effects of substrate temperatures (T-s) on the grain preferred orientation, the electrical and optical properties of ITO films were studied. X-ray diffraction (XRD) patterns indicated that the preferred orientation of film changes from (222) to (400) as T, > 200 degrees C. It can be explained by that the low-index crystallographic planes are easier to be formed when the adatoms have high surface mobility. The Hall measurements indicated that both the concentration and mobility of carrier increase with increasing T,,,. The grain orientation of film does not influence the transmissivity and the carrier concentration, but enhances the carrier mobility. The transmissivity of ITO films is over 90% in the visible wavelength region (except that of the film deposited at 125 degrees C). A minimum resistivity of 5 X 10-4 Omega cm is achieved for the (400) preferred orientation film. Thus, the highest figure of merit of 3.5 x 10(-2) square/Omega is obtained for the film with (400) preferred orientation. The correlation between the preferred orientation and electrical and optical properties are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoluminescence from Er3+-implanted Si-in-SiN, films emitting efficiently visible light were investigated. A Stark structure in the Er3+ photoluminescence spectrum was observed at room temperature, which reveals more than one site symmetry for the Er3+-centers in the Si-in-SiN, matrix. The correlation between the visible photoluminescence from the silicon nanoparticles and the 1.54 mu m emission from the Er3+-centers was discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend the use of Raman spectroscopy to investigate the modes of Er-implanted and Er + O co-implanted GaN, and discuss the influence of O ions on Er3+ -related infrared photoluminescence (PL). It is found that Er3+ implantation introduces new Raman peaks in Raman spectra at frequencies 300 and 670 cm and one additional new peak at 360cm is introduced after Er + O implantation. It is proposed that the broad structure around 300 cm(-1) mode originates from disorder-activated scattering (DARS). The Raman peak at 670 cm is assigned to nitrogen vacancy related defects. The 360 cm peak is attributed to the O implantation induced defect complexes (vacancies, interstitial, or anti-sites in the host). The appearance of the 360 cm(-1) mode results in the decrease of the Er3+ -related infrared PL of GaN: Er + O.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO thin films with highly c-axis orientation have been fabricated on p-type Si(1 1 1) substrates at 400 degrees C by pulsed laser deposition (PLD) from a metallic Zn target with oxygen pressures between 0.1 and 0.7 mbar. Experimental results indicate that the films deposited at 0.3 and 0.5 mbar have better crystalline and optical quality and flatter surfaces than the films prepared at other pressures. The full width at half maximum (FWHM) of (0 0 0 2) diffraction peak decreases remarkably from 0.46 to 0.19 degrees with increasing annealing temperature for the film prepared at 0.3 mbar. In photoluminescence (PL) spectra at room temperature, the annealed film at 700 degrees C exhibits a smaller ultraviolet (UV) peak FWHM of 108 meV than the as-grown film (119 meV). However, an enhanced deep-level emission is observed. Possible origins to above results are discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diphasic silicon films (nc-Si/a-Si:H) have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the nc-Si/a-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. The blue shift for the stretching mode and red shift for the wagging mode in the IR spectra also show the variation of the microstructure. By using this kind of film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51 % and a stabilized efficiency of 8.01% (AM 1.5, 100 mw/cm(2)) at room temperature. (c) 2006 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sb-doped and undoped ZnO thin films were deposited on Si (100) substrates by radio frequency (RF) magnetron sputtering. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses revealed that all the films had polycrystalline wurtzite structure and c-axis preferred orientation. Room temperature Hall measurements showed that the as-grown films were n-type and conducting (rho similar to 1-10 Omega cm). Annealing in a nitrogen ambient at 400 degrees C for 1 h made both samples highly resistive (rho > 10(3) Omega cm). Increasing the annealing temperature up to 800 C, the resistivity of the ttndoped ZnO film decreased gradually, but it increased for the Sb-doped ZnO film. In the end, the Sb-doped ZnO film annealed at 800 C became semi-insulating with a resistivity of 10(4)Omega cm. In addition, the effects of annealing treatment and Sb-doping on the structural and electrical properties are discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray diffraction and Rutherford backscattering/channeling were used to characterize the crystalline quality of an InN layer grown on Al2O3(0001) Using metal-organic chemical-vapor deposition. A full width at half maximum of 0.27 degrees from an InN(0002) omega scan and a minimum yield of 23% from channeling measurements show that this 480-nm-thick InN layer grown at low temperature (450 degrees C) has a relatively good crystalline quality. High-resolution x-ray diffraction indicates that the InN layer contains a small fraction of cubic InN, besides the predominant hexagonal phase. From this InN sample, the lattice constants a=0.353 76 nm and c=0.570 64 nm for the hexagonal InN and a=0.4986 nm for the cubic InN were determined independently. 2 theta/omega-chi mapping and a pole figure measurement revealed that the crystallographic relationship among the cubic InN, the hexagonal InN, and the substrate is: InN[111]parallel to InN[0001]parallel to Al2O3[0001] and InN{110}parallel to InN{1120}parallel to Al2O3{1010}, and that the cubic InN is twinned. Photoluminescence measurements indicate that the band-gap energy of this sample is approximately 0.82 eV. (c) 2006 American Vacuum Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, about 30 mu m thick B-doped polycrystalline silicon (poly-Si) thin films were deposited on quartz substrates, n-type single crystalline silicon wafers and p(++)-type poly-Si ribbons by a rapid thermal chemical vapour deposition system in a temperature range from 1000 to 1150 degrees C. Activation energy measurement and room temperature/temperature dependent Hall effect measurement were performed on the poly-Si thin films prepared on the former two kinds of substrates, respectively. It seems that the electrical properties of as-prepared poly-Si thin films could be qualitatively explained by Seto's grain boundary (GB) trapping theory although there is a big difference between our samples and Seto's in gain size and film thickness etc. The experimental results reconfirm that GB itself is a kind of most effective recombination center with trapping level near the midgap and trapping state density in the order of 1012 cm(-2) magnitude. Electron beam induced current measurements on the poly-Si thin films prepared on the poly-Si ribbons also show that severe recombination occurs at the positions of GBs. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycrystalline silicon thin films were prepared by hot-wire chemical vapor deposition ( HWCVD) on glass at 250 degreesC with W or Ta wire as the catalyzers. The structual and optoelectronic properties as functions of the filament temperature, deposition pressure and the filament-substrate distance were studied, and the optimized polycrystalline silicon thin films were obtained with X-c > 90 % ( X-c denotes the crystalline ratio of the film), crystal grain size about 30-40nm, R-d approximate to 0.8nm/s, sigma(d) about 10(-7) - 10(-6) Omega(-1) cm(-1), Ea(a) approximate to 0.5eV and E-opt less than or equal to 1.3eV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zn1-xCdxO crystal thin films with different compositions were prepared on silicon and sapphire substrates by the dc reactive magnetron sputtering technique. X-ray diffraction measurements show that the Zn1-xCdxO films are of completely (002)-preferred orientation for x less than or equal to 0.6. For x = 0.8, the Elm is a mixture of ZnO hexagonal wurtzite crystals and CdO cubic crystals. For pure CdO, it is highly (200) preferential-oriented. Photoluminescence spectrum measurement shows that the Zn1-xCdxO (x = 0.2) thin film has a redshift of 0.14 eV from that of ZnO reported previously.