836 resultados para GAAS-ALAS SUPERLATTICES


Relevância:

40.00% 40.00%

Publicador:

Resumo:

用Shubnikov-de Haas(SdH)振荡效应,研究了在1.4 K下不同量子阱宽度(10-35 nm)的InP基高电子迁移率晶体管材料的二维电子气特性.通过对纵向电阻SdH振荡的快速傅里叶变换分析,得到不同阱宽时量子阱中二维电子气各子带电子浓度和量子迁移率.研究发现,在Si掺杂浓度一定时,阱宽的改变对于量子阱中总的载流子浓度改变不大,但是随着阱宽的增加,阱中的电子从占据一个子带到占据两个子带,且第二子带上的载流子迁移率远大于第一子带迁移率.当量子阱宽度为20 nm时,处在第二子能级上的电子数与处在第一子能级上的电子数之比达到了最大值0.24.此时有最多的电子位于迁移率高的第二子能级,材料的迁移率也最大.此结果对于优化器件的设计有重要意义.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

用MBE生长设备制造了GaAs/Si/AlAs异质结,通过CV法研究了异质结的带阶和GaAs层在不同温度下生长对0.5分子层Si夹层的影响,得到Si夹层的空间分布随GaAs层生长温度的升高而由局域变为弥散的温度效应。

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1.3 mum wavelength In(Ga)As/GaAs nanometer scale islands grown by molecular beam epitaxy (MBE) were characterized by photoluminescence (PL) and atomic force microscopy (AFM) measurements. It is shown that inhomogeneous broadening of optical emission due to fluctuation of the In0.5Ga0.5As islands both in size and in compositions can be effectively suppressed by introducing a AlAs layer and a strain reduction In0.2Ga0.8As layer overgrown on top of the islands, 1.3mum emission wavelength with narrower line-width less than 20meV at room temperature was obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the lateral carrier transfer in a specially designed quantum dot chain structure by means of time-resolved photoluminescence (PL) and polarization PL. The PL decay time increases with temperature, following the T-1/2 law for the typical one-dimensional quantum system. The decay time depends strongly on the emission energy: it decreases as the photon energy increases. Moreover, a strong polarization anisotropy is observed. These results are attributed to the efficient lateral transfer of carriers along the chain direction. (c) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We reported the all electronic demonstration of spin injection and detection in the trilayers with hybrid structure of CoFeB/GaAs/(Ga,Mn)As (metal/insulator semiconductor) by probing the magnetoresistance at low temperature from 1.8 to 30 K. Tunneling magnetoresistance (TMR) ratios of 3.8%, 4.7%, 2.9%, and 1.4% at 1.8, 10, 20, and 30 K, respectively, were observed. Bias dependence of both the junction resistance and TMR ratio was studied systematically. V-half at which TMR drops to half of its maximum is 6.3 mV, being much smaller compared to that observed in (Ga,Mn)As/ZnSe/Fe and (Ga,Mn)As/AlAs/MnAs hybrid structures, indicating lower Fermi energy of (Ga,Mn)As.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-assembled InAs/AlAs quantum dots embedded in a resonant tunneling diode device structure are grown by molecular beam epitaxy. Through the selective etching in a C6H8O7 center dot H2O-K3C6H5O7 center dot H2O-H2O2 buffer solution, 310 nm GaAs capping layers are removed and the InAs/AlAs quantum dots are observed by field-emission scanning electron microscopy. It is shown that as-fabricated quantum dots have a diameter of several tens of nanometers and a density of 10(10) cm(-2) order. The images taken by this means are comparable or slightly better than those of transmission electron microscopy. The undercut of the InAs/AlAs layer near the edges of mesas is detected and that verifies the reliability of the quantum dot images. The inhomogeneous oxidation of the upper AlAs barrier in H2O2 is also observed. By comparing the morphologies of the mesa edge adjacent regions and the rest areas of the sample, it is concluded that the physicochemical reaction introduced in this letter is diffusion limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The shape of truncated square-based pyramid quantum dots (QDs) is similar to that of real QDs in experiments. The electronic band structures and optical gain of InAs1-xNx/GaAs QDs are calculated by using the 10-band k.p model, and the strain is calculated by the valence force field (VFF) method. When the top part of the QD is truncated, greater truncation corresponds to a flatter shape of the QD. The truncation changes the strain distribution and the confinement in the z direction. A flatter QD has a greater C1-HH1 transition energy, greater transition matrix element, less detrimental effect of higher excited transition, and higher saturation gain and differential gain. The trade-off between these properties must be considered. From our results, a truncated QD with half of its top part removed has better overall performance. This can provide guidance to growing QDs in experiments in which the proper growing conditions can be controlled to achieve required properties. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two type II superlattices (SLs) InAs(2ML)/GaSb(8ML) and InAs(8ML)/GaSb(8ML) were grown on GaAs substrates by molecular-beam epitaxy. High resolution X-ray diffraction showed the periods of the two SLs were 31.2 angstrom and 57.3 angstrom, respectively. Room-temperature optical transmittance spectra showed that there were clear absorption edges at 2.1 mu m and 5 mu m for the two SLs. The SWIR and MWIR photoconductor devices were fabricated by standard lithography and etched by tartaric acid solution. The spectral response and blackbody tests were carried out at low and room temperatues. The results show that the 50% cutoff wavelengths of the two photoconductors are 2.1 mu m and 5.0 mu m respectively and D-bb* is above 2 x 10(8) cmHz(1/2)/W for two kinds of photoconductors at 77K. D-bb* is above 10(8) cmHz(1/2)/W for SWIR photoconductor at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characteristics of a resonant cavity-enhanced InGaAs/GaAs quantum-dot n-i-n photodiode with only a bottom distributed Bragg reflector used as the cavity mirror, are reported. To suppress the dark current, an AlAs layer is inserted into the device structure as the blocking layer. It turns out that the structure still possesses the resonant coupling nature, and makes Rabi splitting discernible in the photoluminescence spectra. The measured responsivity spectrum of the photocurrent shows a peak at lambda = 1030 nm, and increases rapidly as the bias voltage increases. A peak responsivity of 0.75 A/W, or equivalently an external quantum efficiency of 90.3%, is obtained at V-bias = -1.4 V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the molecular beam epitaxy growth of GaSb films on GaAs substrates using AlSb buffer layers. Optimization of AlSb growth parameter is aimed at obtaining high GaSb crystal quality and smooth GaSb surface. The optimized growth temperature and thickness of AlSb layers are found to be 450 degrees C and 2.1 nm, respectively. A rms surface roughness of 0.67 nm over 10 x 10 mu m(2) is achieved as a 0.5 mu m GaSb film is grown under optimized conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photoluminescence (PL) characteristics of GaAsSbN/GaAs epilayers grown by molecular beam epitaxy (MBE) are carefully investigated. The results show that antimony (Sb) incorporation into GaNAs material has less influence on the N-induced localization states. For the same N concentration, GaAsSbN material can reach an emission wavelength near 1.3 mum more easily than GaInNAs material. The rapid thermal annealing (RTA) experiment shows that the annealing induced rearrangement of atoms and related blueshift in GaAsSbN epilayers are smaller than those in GaNAs and GaInNAs epilayers. The GaAsSbN material can keep a longer emission wavelength near 1.3 mum-emission even after the annealing treatment. Raman spectroscopy analysis gives further insight into the structure stability of GaAsSbN material after annealing. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The in-plane optical anisotropy of several GaAs/AlGaAs quantum well samples with different well widths has been measured at room temperature by reflectance-difference spectroscopy (RDS). The RDS line shapes are found to be similar in all the samples examined here, which dominantly consist of two peak-like signals corresponding to 1HH-->1E and 1LH-->1E transition. As the well width is decreased, or the 1 ML InAs layer is inserted at one interface, the intensity of the anisotropy increases quickly. Our detail analysis shows that the anisotropy mainly arises from the anisotropic interface roughness. The results demonstrate that the RDS technique is sensitive to the interface structures.