101 resultados para silicon compounds


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The physical vapor transport (PVT) method is being widely used to grow large-size single SiC crystals. The growth process is associated with heat and mass transport in the growth chamber, chemical reactions among multiple species as well as phase change at the crystal/gas interface. The current paper aims at studying and verifying the transport mechanism and growth kinetics model by demonstrating the flow field and species concentration distribution in the growth system. We have developed a coupled model, which takes into account the mass transport and growth kinetics. Numerical simulation is carried out by employing an in-house developed software based on finite volume method. The results calculated are in good agreement with the experimental observation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The valence band offset (VBO) of InN/4H-SiC heterojunction has been directly measured by x-ray photoelectron spectroscopy. The VBO is determined to be 0.55 +/- 0.23 eV and the conduction band offset is deduced to be -2.01 +/- 0.23 eV, indicating that the heterojunction has a type-I band alignment. The accurate determination of the valence and conduction band offsets is important for applications of InN/SiC optoelectronic devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evolution of carbonization process on Si as a function of ion dose has been carried out by mass-selected ion-beam deposition technique. 3C-SiC layer has been obtained at low ion dose, which has been observed by reflection high energy electron diffraction and X-ray photoelectron spectroscopy (XPS). The chemical states of Si and carbon have also been examined as a function of ion dose by XPS. Carbon enrichment was found regardless of the used ion dose here, which may be due to the high deposition rate. The formation mechanism of SiC has also been discussed based on the subplantation process. The work will also provide further understanding of the ion-bombardment effect. (C) 2001 Published by Elsevier Science B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epitaxial growth of SiC on complex substrates was carried out at substrate temperature from 1200 degreesC to 1400 degreesC. Three kinds of new complex substrates, c-plane sapphire, AlN/sapphire, and GaN/AlN/sapphire, were used in this study. We obtained a growth rate in the range of 1-6 mum/h. Thick (6 mum) SIC epitaxial layers with no cracks were successfully obtained on AlN/sapphire and GaN/AlN/sapphire substrates. X-ray diffraction patterns have confirmed that single-crystal SiC was obtained on these complex substrates. Analysis of optical transmission spectra of the SIC grown on sapphire substrates shows the lowest-energy gap near 2.2 eV, which is the value for cubic SiC. The undoped SIC showed n-type electrical conductivity. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Homoepitaxial growth of SiC on a Si-face (0 0 0 1) GH-SIC substrate has been performed in a modified gas-source molecular beam epitaxy system with Si2H6 and C2H4 at temperatures ranging 1000 1450 degreesC while keeping a constant SiC ratio (0.7) in the gas phase. X-ray diffraction patterns, Raman scattering measurements. and low-temperature photoluminescence spectra showed single-crystalline SiC. Mesa-type SiC p-n junctions were obtained on these epitaxial layers, and their I-V characteristics are presented. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this letter, we present a facet coating design to delay the excited state (ES) lasing for 1310 nm InAs/GaAs quantum dot lasers. The key point of our design is to ensure that the mirror loss of ES is larger than that of the ground state by decreasing the reflectivity of the ES. In the facet coating design, the central wavelength is at 1480 nm, and the high- and low-index materials are Ta2O5 and SiO2, respectively. Compared with the traditional Si/SiO2 facet coating with a central wavelength of 1310 nm, we have found that with the optimal design the turning temperature of the ES lasing has been delayed from 90 to 100 degrees C for the laser diodes with cavity length of 1.2 mm. Furthermore, the characteristic temperature (T-0) of the laser diodes is also improved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epitaxial growth of SiC on complex substrates was carried out at substrate temperature from 1200 degreesC to 1400 degreesC. Three kinds of new complex substrates, c-plane sapphire, AlN/sapphire, and GaN/AlN/sapphire, were used in this study. We obtained a growth rate in the range of 1-6 mum/h. Thick (6 mum) SIC epitaxial layers with no cracks were successfully obtained on AlN/sapphire and GaN/AlN/sapphire substrates. X-ray diffraction patterns have confirmed that single-crystal SiC was obtained on these complex substrates. Analysis of optical transmission spectra of the SIC grown on sapphire substrates shows the lowest-energy gap near 2.2 eV, which is the value for cubic SiC. The undoped SIC showed n-type electrical conductivity. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Homoepitaxial growth of SiC on a Si-face (0 0 0 1) GH-SIC substrate has been performed in a modified gas-source molecular beam epitaxy system with Si2H6 and C2H4 at temperatures ranging 1000 1450 degreesC while keeping a constant SiC ratio (0.7) in the gas phase. X-ray diffraction patterns, Raman scattering measurements. and low-temperature photoluminescence spectra showed single-crystalline SiC. Mesa-type SiC p-n junctions were obtained on these epitaxial layers, and their I-V characteristics are presented. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A pronounced photoluminescence enhancement on chemically oxidized porous silicon was induced by a series of organic cyano compounds including 1,2-dicyanoethylene (CE), 1,3-dicyanobenzene (1,3-CB), 1,4-dicyanobenzene (1,4-CB), 1-cyanonaphthalene (1-CN), and 9-cyanoanthracene (9-CA). Photoluminescence enhancement effects were reversible for all compounds studies in this work. A dependence of photoluminescence enhancement on the steric effect and the electronic characteristics of these compounds and the structure of the porous silicon substrates were analyzed in terms of the photoluminescence enhancing factors. Surface chemical composition examined by Fourier transform infrared (FTIR) spectra demonstrated that the surface Si-H bonds were not changed and no new luminescent compounds were formed on porous silicon surface during adsorption of cyano compounds. A mechanism based on induced surface states acting as radiative recombination centers by cyano compounds adsorption was suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One kind of surface modification method on silicon wafer was presented in this paper. A mixed silanes layer was used to modify silicon surface and rendered the surface medium hydrophobic. The mixed silanes layer contained two kinds of compounds, aminopropyltriethoxysilane (APTES) and methyltriethoxysilane (NITES). A few of APTES molecules in the layer was used to immobilize covalently human immunoglobulin G (IgG) on the silicon surface. The human IgG molecules immobilized covalently on the modified surface could retain their structures well and bind more antibody molecules than that on silicon surface modified with only APTES. This kind of surface modification method effectively improved the sensitivity of the biosensor with imaging ellipsometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study focuses on mechanism of ceramic coating on Al-Si alloys with bulk primary Si using plasma electrolytic oxidation (PEO) technology. Al-Si alloys with 27-32% Si in weight were used as substrates. The morphologies, composition and microstructure of PEO coatings were investigated by scanning electron microscopy (SEM) with energy dispersive X-ray system (EDX). Results showed that the PEO process had four different stages. The effect of bulk Si is greatly on the morphology and composition of coatings at first three stages. Anodic oxide films formed on Al and Si phases, respectively. When the voltage exceeded 40 V, glow appeared and concentrated on the localized zone of interface of Al and Si phase. Al-Si-O compounds formed and covered on the dendrite Si phase surface, and the coating on bulk Si, which was silicon oxide, was rougher than that on other phase. If the treatment time was long enough, the coatings with uniform surface morphologies and elements distribution will be obtained but the microstructure of inner layer is looser due to the bulk Si.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the conversion of near-ultraviolet radiation of 250-350 nm into near-infrared emission of 970-1100 nm in Yb3+-doped transparent glass ceramics containing Ba2TiSi2O8 nanocrystals due to the energy transfer from the silicon-oxygen-related defects to Yb3+ ions. Efficient Yb3+ emission (F-2(5/2)-> F-2(7/2)) was detected under the excitation of defects absorption at 314 nm. The occurrence of energy transfer is proven by both steady state and time-resolved emission spectra, respectively, at 15 K. The Yb2O3 concentration dependent energy transfer efficiency has also been evaluated, and the maximum value is 65% for 8 mol % Yb2O3 doped glass ceramic. These materials are promising for the enhancement of photovoltaic conversion efficiency of silicon solar cells via spectra modification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A two dimensional silicon-on-insulator based photonic crystal structure is used to enhance the emission from colloidal HgTe nanocrystal quantum dots embedded in a thin polymer film. The enhancement is resonant to the leaky eigenmodes of the photonic crystals due to coherent scattering effects. Transmittance and photoluminescence experiments are presented to map the leaky mode dispersion and the angle dependence of the emission enhancement factor, which reaches values up to 80 (650) for vertical (oblique) emission in the telecommunication wavelength range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desorption/ionization on silicon mass spectrometry (DIOS-MS) is a matrix-free technique that allows for the direct desorption/ionization of low-molecular-weight compounds with little or no fragmentation of analytes. This technique has a relatively high tolerance for contaminants commonly found in biological samples. DIOS-MS has been applied to determine the activity of immobilized enzymes on the porous silicon surface. Enzyme activities were also monitored with the addition of a competitive inhibitor in the substrate solution. It is demonstrated that this method can be applied to the screening of enzyme inhibitors. Furthermore, a method for peptide mapping analysis by in situ digestion of proteins on the porous silicon surface modified by trypsin, combined with matrix-assisted laser desorption/ionization-time of flight-MS has been developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four diboron-contained ladder-type pi-conjugated compounds 1-4 were designed and synthesized. Their thermal, photophysical, electrochemical properties, as well as density functional theory calculations, were fully investigated. The single crystals of compounds 1 and 3 were grown, and their crystal structures were determined by X-ray diffraction analysis. Both compounds have a ladder-type g-conjugated framework. Compounds I and 2 possess high thermal stabilities, moderate solid-state fluorescence quantum yields, as well as stable redox properties, indicating that they are possible candidates for emitters and charge-transporting materials in electroluminescent (EL) devices. The double-layer device with the configuration of [ITO/NPB (40 nm)/1 or 2 (70 nm)/LiF (0.5 nm)/Al (200 nm)] exhibited good EL performance with the maximum brightness exceeding 8000 cd/m(2).