77 resultados para Rocks, Metamorphic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general formulation of the Helmholtz free energy used in thermodynamics of damage process of rocks is derived within a multi-scale framework. Such a physically-based thermodynamic state potential has a hybrid, discrete/continuum, nature in the sense tha

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Top-illuminated metamorphic InGaAs p-i-n photodetectors (PDs) with 50% cut-off wavelength of 1.75 mu m at room temperature are fabricated on GaAs substrates. The PDs are grown by a solid-source molecular beam epitaxy system. The large lattice mismatch strain is accommodated by growth of a linearly graded buffer layer to create a high quality virtual InP substrate indium content in the metamorphic buffer layer linearly changes from 2% to 60%. The dark current densities are typically 5 x 10(-6) A/cm(2) at 0 V bias and 2.24 x 10(-4) A/cm(2) at a reverse bias of 5 V. At a wavelength of 1.55 mu m, the PDs have an optical responsivity of 0.48 A/W, a linear photoresponse up to 5 mW optical power at -4 V bias. The measured -3 dB bandwidth of a 32 mu m diameter device is 7 GHz. This work proves that InGaAs buffer layers grown by solid source MBE are promising candidates for GaAs-based long wavelength devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very low threshold current density InGaAs/ GaAs quantum well laser diodes grown by molecular beam epitaxy on InGaAs metamorphic buffers are reported. The lasing wavelength of the ridge waveguide laser diode with cavity length of 1200 mm is centred at 1337.2 nm; the threshold current density is 205 A/cm(2) at room temperature under continuous-wave operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of metamorphic high electron mobility transistors (MMHEMTs) with different V/III flux ratios are grown on GaAs (001) substrates by molecular beam epitaxy (XIBE). The samples are analysed by using atomic force microscopy (AFM), Hall measurement, and low temperature photoluminescence (PL). The optimum V/III ratio in a range from 15 to 60 for the growth of MMHEMTs is found to be around 40. At this ratio, the root mean square (RMS) roughness of the material is only 2.02 nm; a room-temperature mobility and a sheet electron density are obtained to be 10610.0cm(2)/(V.s) and 3.26 x 10(12)cm(-2) respectively. These results are equivalent to those obtained for the same structure grown on InP substrate. There are two peaks in the PL spectrum of the structure, corresponding to two sub-energy levels of the In0.53Ga0.47 As quantum well. It is found that the photoluminescence intensities of the two peaks vary with the V/III ratio, for which the reasons are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the molecular beam epitaxy growth of metamorphic InxGa(1-x)As materials (x up to 0.5) on GaAs substrates systematically. Optimization of structure design and growth parameters is aimed at obtaining smooth surface and high optical quality. The optimized structures have an average surface roughness of 0.9-1.8 nm. It is also proven by PL measurements that the optical properties of high indium content (55%) InGaAs quantum wells are improved apparently by defect reduction technique and by introducing Sb as a surfactant. These provide us new ways for growing device quality metamorphic structures on GaAs substrates with long-wavelength emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bilayer stacked InAs/GaAs quantum dot structure grown by molecular beam epitaxy on an In0.05Ga0.95As metamorphic buffer is investigated. By introducing a InGaAs Sb cover layer on the upper InAs quantum dots (QDs) layers, the emission wavelength of the QDs is extended successfully to 1.533 mu m at room temperature, and the density of the QDs is in the range of 4 x 10(9) -8 x 10(9) cm(-2). Strong photoluminescence (PL) intensity with a full width at half maximum of 28.6 meV of the PL spectrum shows good optical quality of the bilayer QDs. The growth of bilayer QDs on metamorphic buffers offers a useful way to extend the wavelengths of GaAs-based materials for potential applications in optoelectronic and quantum functional devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, InAs quantum dots (QDs) grown on a linear graded InGaAs metamorphic buffer layer by molecular beam epitaxy have been investigated. The growth of the metamorphic buffer layers was carefully optimized, yielding a smooth surface with a minimum root mean square of roughness of less than 0.98 nm as measured by atomic force microscopy (AFM). InAs QDs were then grown on the buffer layers, and their emission wavelength at room-temperature is 1.49 mu m as measured by photoluminescence (PL). The effects of post-growth rapid thermal annealing (RTA) on the optical properties of the InAs QDs were investigated. After the RTA, the PL peak of the QDs was blue-shifted and the full width at half maximum decreased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a 1.5-mu m InGaAs/GaAs quantum well laser diode grown by molecular beam epitaxy on InGaAs metamorphic buffers. At 150 K, for a 1500 x 10 mu m(2) ridge waveguide laser, the lasing wavelength is centred at 1.508 mu m and the threshold current density is 667 A/cm(2) under pulsed operation. The pulsed lasers can operate up to 286 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the temperature dependence of photoluminescence (PL) and time-resolved PL on the metamorphic InGaAs quantum wells (QWs) with an emission wavelength of 1.55 mu m at room temperature. Time-resolved PL measurements reveal that the optical properties can be partly improved by introducing antimony (Sb) as a surfactant during the sample growth. The temperature dependence of the radiative lifetime is measured, showing that for QWs grown with Sb assistance, the intrinsic exciton emission is dominated when the temperature is below 60 K, while the nonradiative process becomes activated with further increases in temperature. However, without Sb assistance, the nonradiative centers are activated when the temperature is higher than 20 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate 1.25-1.29 mu m metamorphic laser diodes grown on GaAs by molecular beam epitaxy (MBE) using an alloy-graded buffer layer (GBL). Use of Be in the GBL is effective to reduce surface/interface roughness and improves optical quality. The RMS surface roughness of the optimized metamorphic laser is only two atomic monolayers for 1 x 1 mu m(2). Cross-sectional transmission electron microscopy (TEM) images confirm that most dislocations are blocked in the GBL. Ridge waveguide lasers with 4 mu m wide ridge were fabricated and characterized. The average threshold current under the pulsed excitation is in 170-200 mA for a cavity length of 0.9-1.5 mm. This value can be further reduced to about 100 mA by high-reflectivity coating. Lasers can work in an ambient temperature up to at least 50 degrees C. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metamorphic InGaAs quantum well structures grown on GaAs reveal strong light emission at 1.3-1.6 mu m, smooth surface with an average roughness below 2 nm. and good rectifying I-V characteristics. Dark line defects are found in the QW Post growth thermal annealing further improves the luminescence efficiency but does not remove those dark line defects. Some challenges of epitaxial growth using this method for laser applications are discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaAs-based InAs quantum dots using InGaAs composition-graded metamorphic layers have been investigated by molecular beam epitaxy. Emission with the wavelength similar to 1.5 mu m from the dots was obtained at room temperature with the relatively large full width at half maximum. The emission wavelength is relatively stable when subjected to fast annealing. The number density of dots reached similar to 6 x 10(10) cm(-2). Undulated morphology was observed on the surface of the sample, which has some influence on the dot size and distribution. In epilayers, misfit dislocations were confined within the step-graded InGaAs metamorphic buffer layer. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

4.2 K photoluminescence (PL) and 77 K standard Hall-effect measurements were performed for In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor (HEMT) structures grown on GaAs substrates with different indium contents in the InxGa1-xAs well or different Si delta-doping concentrations. It was found that electron concentrations increased with increasing PL intensity ratio of the "forbidden" transition (the second electron subband to the first heavy-hole subband) to the sum of the "allowed" transition (the first electron subband to the first heavy-hole subband) and the forbidden transition. And electron mobilities decreased with increasing product of the average full width at half maximum of allowed and forbidden transitions and the electron effective mass in the InxGa1-xAs quantum well. These results show that PL measurements are a good supplemental tool to Hall-effect measurements in optimization of the HEMT layer structure. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shubnikov-de Haas measurements were carried out for In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor structures grown on GaAs substrates with different indium contents and/or different Si delta-doping concentrations. Zero-field (B-->0) spin splitting was found in samples with stronger conduction band bending in the InGaAs well. It was shown that the dominant spin splitting mechanism is attributed to the contribution by the Rashba term. We found that zero-field spin splitting not only occurs in the ground electron subband, but also in the first excited electron subband for a sample with Si delta-doping concentration of 6x10(12) cm(-2). We propose that this In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor structure grown on GaAs may be a promising candidate spin-polarized field-effect transistors. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A step-graded InAlAs buffer layer and an In0.52Al0.48As/In0.53Ga0.47As metamorphic high electron mobility transistor (MM-HEMT) structures were grown by molecular beam epitaxy on GaAs (001) substrates, and rapid thermal annealing was performed on them in the temperature range 500-800 degreesC for 30 s. The as-grown and annealed samples were investigated with Hall measurements, and 77 K photoluminescence. After rapid thermal annealing, the resistivities of step-graded InAlAs buffer layer structures became high. This can avoid leaky characteristics and parasitic capacitance for MM-HEMT devices. The highest sheet carrier density n(s) and mobility mu for MM-HEMT structures were achieved by annealing at 600 and 650degreesC, respectively. The relative intensities of the transitions between the second electron subband to the first heavy-hole subband and the first electron subband to the first heavy-hole subband in the MM-HEMT InGaAs well layer were compared under different annealing temperatures. (C) 2002 American Institute of Physics.