201 resultados para Quantitative microscopy
Resumo:
We report the quantitative strain characterization in semiconductor heterostructures of silicon-germaniums (Si(0.76)Geo(0.24)) grown on Si substrate by an ultra-high vacuum chemical vapor deposition system. The relaxed SiGe virtual substrate has been achieved by thermal annealing of the SiGe film with an inserted Ge layer. Strain analysis was performed using a combination of high-resolution transmission electron microscopy and geometric phase analysis.
Resumo:
We quantitatively study the domain inversion in a RuO2:LiNbO3 crystal wafer by the digital holographic interferometry. The crystal wafer is placed into one arm of a Mach-Zehnder-type interferometer to record a series of holograms. Making use of the angular spectrum backward propagation algorithm, we reconstruct the optical wave field in the crystal plane. The extracted phase difference from the reconstructed optical wave field is a well linear function of the applied external voltage. We deduce that the linear electro-optic coefficient of the detected RuO2:LiNbO3 crystal sample is 9.1x10(-12) m/V. An unexpected phase contrast at the antiparallel domain wall is observed and the influence of the applied external voltage on it is studied in detail. Also the built-in internal field is quantitatively measured as 0.72 kV/mm. (c) 2006 American Institute of Physics.
Resumo:
In the present paper a general analytic expression has been obtained and confirmed by a computer simulation which links the surface roughness of an object under study in an emission electron microscope and it's resolution. A quantitative derivation was made for the model case when there is a step on the object surface. It was shown that the resolution is deteriorated asymmetrically relative to the step. The effect sets a practical limit to the ultimate lateral resolution obtainable in an emission electron microscope.
Resumo:
A mechanical model of a laser transformation hardening specimen with a crack in the middle of the hardened layer is developed to quantify the effects of the residual stress and hardness gradient on crack driving force in terms of J-integral. It is assumed
Resumo:
The adsorption and competitive adsorption of collagen and bovine serum albumin (BSA) were directly visualized and quantified using atomic force microscopy (AFM) and imaging ellipsometry. Chemically modified silicon surfaces were used as hydrophilic and hydrophobic substrates. The results showed that collagen and BSA in single component solution adsorbed onto a hydrophobic surface two times more than that onto a hydrophilic surface. The competitive adsorption between collagen and BSA showed that serum albumin preferentially adsorbed onto a hydrophobic surface, while collagen on a hydrophilic surface. In the binary solution of BSA (1 mg/ml BSA) and collagen (0.1 mg/ml), nearly 100% of the protein adsorbed onto the hydrophobic surface was BSA, but on the hydrophilic surface only about 6% was BSA. Surface affinity was the main factor controlling the competitive adsorption.
Resumo:
Microstructure characterization is important for controlling the quality of laser welding. In the present work, a detailed microstructure characterization by transmission electron microscopy was carried out on the laser welding cast Ni-based superalloy K418 turbo disk and alloy steel 42CrMo shaft and an unambiguous identification of phases in the weldment was accomplished. It was found that there are gamma-FeCrNiC austenite solid solution dendrites as the matrix, (Nb, Ti) C type MC carbides, fine and dispersed Ni-3 Al gamma' phase as well as Laves particles in the interdendritic region of the seam zone. A brief discussion was given for their existence based on both kinetic and thermodynamic principles. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The natural frequencies of a cantilever probe can be tuned with an attached concentrated mass to coincide with the higher harmonics generated in a tapping-mode atomic force microscopy by the nonlinear tip-sample interaction force. We provide a comprehensive map to guide the choice of the mass and the position of the attached particle in order to significantly enhance the higher harmonic signals containing information on the material properties. The first three eigenmodes can be simultaneously excited with only one carefully positioned particle of specific mass to enhance multiple harmonics. Accessing the interaction force qualitatively based on the high-sensitive harmonic signals combines the real-time material characterization with the imaging capability. (C) 2008 American Institute of Physics.
Resumo:
How fibroin molecules fold themselves and further self-assemble into aggregations with specific structures when the solution concentration increases is the key to understanding the natural silk-forming process of the silkworm. A regenerated Bombyx mori silk fibroin solution was prepared, and serially diluted solutions were coated on aminated coverslips. Atomic force microscopy (AFM) observations of the topography of fibroin molecules revealed a transformation from rodlike aggregations 100-200 nm long to small globules 50 mn in diameter with decreasing concentrations. When the incubation duration increased, the aggregations of fibroin molecules showed a self-assembling process, which was measured with AFM. In particular, after the molecules were incubated for more than 20 min, rodlike micelles formed and were distributed evenly on the surface of the aminated slides. Flow chamber technology was used to study the effect of the shear loading on the topography of the fibroin molecular aggregations. After a shear loading was applied, larger rodlike particles formed at a higher incubation concentration in comparison with those at a lower concentration and were obviously oriented along the direction of fluid flow.
Resumo:
When the atomic force microscopy (AFM) in tapping mode is in intermittent contact with a soft substrate, the contact time can be a significant portion of a cycle, resulting in invalidity of the impact oscillator model, where the contact time is assumed to be infinitely small. Furthermore, we demonstrate that the AFM intermittent contact with soft substrate can induce the motion of higher modes in the AFM dynamic response. Traditional ways of modeling AFM (one degree of freedom (DOF) system or single mode analysis) are shown to have serious mistakes when applied to this kind of problem. A more reasonable displacement criterion on contact is proposed, where the contact time is a function of the mechanical properties of AFM and substrate, driving frequencies/amplitude, initial conditions, etc. Multi-modal analysis is presented and mode coupling is also shown. (c) 2006 Published by Elsevier Ltd.
Resumo:
Recently, it has been observed that a liquid film spreading on a sample surface will significantly distort atomic force microscopy (AFM) measurements. In order to elaborate on the effect, we establish an equation governing the deformation of liquid film under its interaction with the AFM tip and substrate. A key issue is the critical liquid bump height y(0c) at which the liquid film jumps to contact the AFM tip. It is found that there are three distinct regimes in the variation of y(0c) with film thickness H, depending on Hamaker constants of tip, sample and liquid. Noticeably, there is a characteristic thickness H* physically defining what a thin film is; namely, once the film thickness H is the same order as H* , the effect of film thickness should be taken into account. The value of H* is dependent on Hamaker constants and liquid surface tension as well as tip radius.
Resumo:
Combining differential confocal microscopy and an annular pupil filter, we obtained the normalized axial intensity distribution curve of an optical system. We used the sharp slopes of the axial response curve of the optical system to measure the surface profile of a reflection grating. Experimental results prove that this method can extend the axial dynamic range and improve the transverse resolution of three-dimensional profilometry by sacrificing axial resolution. (C) 2000 Optical Society of America.
The intensity distributions of collected signals in coherent anti-Stokes Raman scattering microscopy
Resumo:
Coherent anti-Stokes Raman scattering (CARS) microscopy with the combining of confocal and CARS techniques is a remarkable alternative for imaging chemical or biological specimens that neither fluoresce nor tolerate labeling. The CARS is a nonlinear optical process, the imaging properties of CARS microscopy will be very different from the conventional confocal microscopy. In this paper, we calculated the propagation of CARS signals by using the wave equation in medium and the slowly varying envelope approximation (SVEA), and find that the intensity angular distributions vary considerably with the different experimental configurations and the different specimen shapes. So the conventional description of microscopy (e.g.. the point spread function) will fail to descript the imaging properties of CARS microscopy. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
In the present study, single-molecule fluorescence microscopy was used to examine the characteristics of plasma membrane targeting and microdomain localization of enhanced yellow fluorescent protein (eYFP)-tagged wild-type Dok5 and its variants in living Chinese hamster ovary (CHO) cells. We found that Dok5 can target constitutively to the plasma membrane, and the PH domain is essential for this process. Furthermore, single-molecule trajectories analysis revealed that Dok5 can constitutively partition into microdomain on the plasma membrane. Finally, the potential mechanism of microdomain localization of Dok5 was discussed. This study provided insights into the characteristics of plasma membrane targeting and microdomain localization of Dok5 in living CHO cells. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We theoretically demonstrate that enhanced penetration depth in three-dimensional multiphoton microscopy can be achieved using concentric two-color two-photon (C2C2P) fluorescence excitation in which the two excitation beams are separated in space before reaching their common focal spot. Monte Carlo simulation shows that, in comparison with the one-color two-photon excitation scheme, the C2C2P fluorescence microscopy provides a significantly greater penetration depth for imaging into a highly scattering medium. (C) 2008 Optical Society of America.