78 resultados para Microprojectile bombardment
Resumo:
A human acidic fibroblast growth factor gene, hafgf, was successfully transferred into Laminaria japonica (kelp) gametophytes via microprojectile bombardment using the biolistic PDS-1000/He gene gun. Following phosphinothricin screening, PCR detection and Southern blot analysis, transgenic L. japonica gametophytes were cultivated in an illuminated bubble-column bioreactor to optimize growth conditions. A maximal final dry cell density of 1,695 mg l(-1) was obtained in a batch culture having an initial dry cell density of 129.75 mg l(-1). This was achieved using an aeration rate of 1.08 l air min(-1) l(-1) culture in a medium containing 1.5 mM inorganic nitrate and 0.15 mM phosphate. In addition, the relationship between different nitrogen sources and growth of transgenic gametophytes indicated that both urea and sodium nitrate were effective nitrogen sources for cell growth, while ammonium ions inhibited growth of these gametophytes.
Resumo:
本研究在前人研究工作的基础上,以小麦转化系统的建立和完善为前提,将BADH基因导入小麦,获得外源BADH基因表达的小麦转基因植株。 (1)小麦不同基因型、不同外植体和不同器官对PPT或bialaphos选择的反应不同,两种试剂对小麦转化体的选择具有同样效果。轰击后的受体材料经过2-3天的恢复生长且植株分化时不用PPT选择可以提高转化效率。冀885-443和石90-4185两个品种对PPT敏感程度适中,具有较强的植株再生能力,得到的转基因植株数和转基因频率均较高。 (2)用pAHC25质粒转化冀885-443等小麦品种取得成功,获得转基因植株12株,平均转基因频率为0.4%。Southern杂交结果表明bar基因已经整合到小麦基因组中。根据研究结果认为,过快过高地提高PPT浓度是造成转基因频率低的主要原因。 (3)采用基因枪法成功地将山菠菜BADH基因(pABH9)导入到冀885-443等品种中。PCR检测和Southern杂交分析证实获得26株转基因植株,不同品种转化频率介于0.3-2.7%,外源BADH基因在转基因植株的叶片内表达。在胁迫条件下有15株转基因植株的BADH酶活力单位明显超过亲本;有6株的相对电导率显著比亲本低,说明这些植株在胁迫条件下细胞受到损伤比亲本低。 (4)采用花粉管通道法向小麦转化pAHC25,筛选出62株抗PPT,转化频率为3.97%。采用农杆菌介导转化冀885-443的成熟胚和幼胚愈伤组织,在转化愈伤组织中观察到gus基因的表达,也得到抗G418的愈伤组织,但没能得到再生植株。
Resumo:
羊草(Leymus chinensis (Trin.) Tzvel),隶属禾本科赖草属,是欧亚大陆草原区东部重要建群种之一。羊草是牧草之王,是我国比较有优势的战略性生物资源,对我国北方畜牧业的发展以及生态环境的保育均具有重要意义。近年来,由于缺乏科学管理、过度放牧等不利影响,加之羊草本身固有的“三低”问题(即抽穗率低、结实率低、发芽率低)已对羊草生物多样性维持构成了严重的威胁,限制了我国人工草地建设和天然草地的改良及沙化治理的步伐。因此,如何通过细胞、分子生物学以及生物技术手段改良羊草、快速评价和创造新的种质;如何加快育种进程便成为当前亟待解决的问题。本文围绕这些问题开展了系统的研究并取得如下结果: 1. 建立了羊草离体培养再生体系,并研究了影响愈伤组织诱导和植株再生的因素,影响植株再生的主要因素为激素配比和基因型。将3~5mm的幼穗接种到含有2,4-D 0~5.0mg/L的N6基本培养基上,随着2,4-D浓度的变化,愈伤组织诱导率不同,最高诱导率为93.21%(基因型C6)、最低为33.35%(吉生1号);愈伤组织在N6(大)+B5(微)+KT1.0mg/L+BA1.0mg/L的培养基上可以分化出芽,并在1/2MS培养基上生根。羊草基因型W4不同幼穗诱导的愈伤组织在继代培养过程中其生长、褐化死亡等方面存在着差异;在分化培养过程中,不同幼穗的愈伤组织最高分化率为9.24%,最低分化率为5.26%。 2. 对来自同一基因型不同幼穗的愈伤组织中差异表达的基因进行了研究。采用DDRT-PCR技术对其差异表达的基因进行了分离,通过银染技术显示差异片段。将得到的差异片段进行回收、克隆测序,得到两个差异片段序列,经过序列分析表明,其中一个片段是与水稻翻译延伸因子eEF-1基因高度同源;另一差异片段与水稻谷胱甘肽转移酶GST基因高度同源。 3. 建立了羊草遗传转化方法。在获得羊草离体培养再生体系的基础上,采用基因枪法对羊草两个基因型进行转抗除草剂基因(PAT)的研究。对分别来自基因型W4和C3的愈伤组织各1430和1850块进行转化。在附加1.0mg/L PPT的培养基上进行一系列的筛选培养,共获得了23株再生苗,经过生根筛选培养,得到5株抗性苗,3株来自基因型W4,2株来自基因型C3。对5株植株进行PCR和Southern 检测,得到2株阳性苗,均来自基因型W4,对阳性植株经过无性繁殖得到的无性系进行PCR检测及Basta耐受性鉴定,外源基因可以在其无性系稳定遗传并表达,无性系除对Basta具有抗性外,其表型特征与对照无明显区别。
Resumo:
鞑靼荞麦是我国特有的农业产品,具有抗寒耐旱特性和较高的营养保健功能。荞麦的开花习性及遗传特点导致其人工杂交授粉难以成功,这成为荞麦杂交育种难以获得突破的重要原因。因此利用转基因技术导入有益基因有可能成为荞麦遗传改良的新途径,而再生及转化体系的建立是开展转基因研究的基础。 本文研究了苗龄、外植体、几种激素配比对鞑靼荞麦(Fagopyrum tataricum Gaertn.)离体培养的影响,初步建立了鞑靼荞麦离体再生体系。结果表明,鞑靼荞麦离体再生的最佳取材时间为苗龄6-8d;诱导愈伤组织的最适培养基为MS+2.0 mg/L 2,4-D+1.5 mg/L 6-BA,子叶诱愈率达75%左右,下胚轴的可高达86.62%;愈伤组织分化的最适培养基为MS 0.1mg/L IAA+2.0mg/L 6-BA+1.0 mg/L KT+0.5mg/L TDZ,下胚轴的分化率可达9.52%。下胚轴的诱愈率与分化率均高于子叶,更适于离体再生培养。培养基中加入AgNO3后,能有效降低褐化率。生根最适培养基为含有0.5mg/L NAA的1/2MS培养基,生根率在50%左右。TDZ在诱导鞑靼荞麦的愈伤组织分化出芽的过程中起到明显的促进作用,可提高分化率约20%。 在上述研究基础上,本文还对鞑靼荞麦的遗传转化体系进行了探索性研究。分别利用根癌农杆菌(Agrobacterium tumefaciens)介导法和微粒轰击法(基因枪法)对黑水苦荞下胚轴进行遗传转化。 在农杆菌介导的方法中,携带有质粒pCAMBIA2301的农杆菌菌株EHA105用于转化。载体质粒pCAMBIA2301包含有gus和npt-II 基因, 并受35s启动子驱动。研究结果表明,在侵染方式选择上,浸泡方式比吸打方式更有效,根癌农杆菌侵染的较适浓度为OD600=0.5,共培养3天,恢复培养7天,能检测到gus基因的表达。 基因枪法使用质粒pBI121,同样包含有gus和npt-II基因, 并受CaMV35s 启动子驱动。轰击距离为9cm较合适,甘露醇前处理在本研究中未表现出明显优势。 两种转化方法比较,基因枪法比农杆菌介导法更快速有效。 本研究为进一步的遗传操作研究打下基础。 Tartary buckwheat (Fagopyrum tataricum Gaertn.), the traditional and unique agricultural product of China, is a kind of crop with strong drought and cold tolerance, abundant nutrition and high medical value. Artificial hybridization is hard in buckwheat because of its flowering habits and genetic characteristics, which leads to no breakthrough in tartary buckwheat breeding. However, biotechnological approaches, especially genetic transformation for the direct introduction of good genes into tartary buckwheat for quality improvement, hold great promise. In this study, we established tartary buckwheat regeneration system in vitro. It is the foundation for genetic manipulation of this crop. The effects of seedling age, hypocotyl and cotyledon as explants, and proportions of several growth regulators were tested in tissue culture of tartary buckwheat for establishing its in vitro regeneration system. The results showed that the best seedling age for callus induction was 6 to 8 days. On the MS medium containing 2.0mg/L 2, 4-D and 1.5mg/L 6-BA, the induction rate of callus from hypocotyls was up to 86.62%, while from cotyledons was about 75%. The suitable shooting medium was the MS medium+0.1mg/L IAA+2.0mg/L 6-BA+1.0 mg/L KT+0.5mg/L TDZ, and the shooting rate from hypocotyls was 9.52%. The callus induction and shooting rates were higher from hypocotyls than from cotyledons. Browning reduced when the medium mixed with AgNO3. Half strength MS supplemented with 0.5mg/L NAA was the best for rooting, the rate was around 50% after 30 days culture. TDZ can accelerate the shoot differentiation distinctively, and it could improve the shooting rate nearly 20%. On the base of above, the explorative research of the genetic transformation in tartary buckwheat was done. In the study, hypocotyls from Heishui tartary buckwheat were transformed by Agrobacterium-mediated method and microprojectile bombardment method (gene-gun), comparatively. In Agrobacterium-mediated method, a disarmed Agrobacterium tumefaciens strain EHA105 harboring plasmid pCAMBIA2301 was used. The vector pCAMBIA2301 contains gus and npt-II genes, driven by CaMV35s promoter. The results showed that the appropriate concentration of Agrobacterium tumefaciens for infecting was OD600=0.5, and co-culture time was 3d. Seven days later after coculture, GUS expression could be tested. In particle bombardment transformation, plasmid pBI121 was used. pBI121 also contains gus and npt-II genes, driven by 35s promoter. Hypocotyls pretreated with mannitol, no effect was observed, and the suitable distance of bombardment is 9cm. Comparing with Agrobacterium-mediated method, gene-gun method is more convenient and effective. All above results could be a basic work for further study in tartary buckwheat transformation.
Resumo:
BACKGROUND: Previously, tachyplesin gene (tac) has been successfully transferred into Undaria pinnatifida gametophytes using the method of microprojectile bombardment transformation. The objectives of this study were to compare and evaluate the performance of bubble-column and airlift bioreactors to determine a preferred configuration of bioreactor for vegetative propagation of transgenic U. pinnatifida gametophytes, and to then investigate the influence of light on vegetative propagation of these gametophytes, including incident light intensity, photoperiod and light quality to resolve the problems of rapid vegetative propagation within the selected bioreactor. RESULTS: Experimental results showed that final dry cell density in the airlift bioreactor was 12.7% higher than that in the bubble-column bioreactor under the optimal aeration rate of 1.2 L air min(-1) L-1 culture. And a maximum final dry cell density of 2830 mg L-1 was obtained within the airlift bioreactor using blue light at 40 mu mol m(-2) s(-1) with a light/dark cycle of 14/10 (h). Polymerase chain reaction (PCR) analysis indicated that genes (bar and tac) were not lost during rapid vegetative propagation within the airlift bioreactor. CONCLUSION: The airlift bioreactor was shown to be much more suitable for rapid vegetative propagation of transgenic U. pinnatifida gametophytes than the bubble-column bioreactor in the laboratory. The use of blue light allows improvement of vegetative propagation of transgenic U. pinnatifida gametophytes. (C) 2009 Society of Chemical Industry
Resumo:
A cross-sectional high-resolution transmission electron microscopy (HRTEM) study of a film deposited by a 1 keV mass-selected carbon ion beam onto silicon held at 800 degrees C is presented. Initially, a graphitic film with its basal planes perpendicular to the substrate is evolving. The precipitation of nanodiamond crystallites in upper layers is confirmed by HRTEM, selected area electron diffraction, and electron energy loss spectroscopy. The nucleation of diamond on graphitic edges as predicted by Lambrecht [W. R. L. Lambrecht, C. H. Lee, B. Segall, J. C. Angus, Z. Li, and M. Sunkara, Nature, 364 607 (1993)] is experimentally confirmed. The results are discussed in terms of our recent subplantation-based diamond nucleation model. (c) 2005 American Institute of Physics.
Resumo:
Deposition of 1000 eV pure carbon ions onto Si(001) held at 800 degrees C led to direct nucleation of diamond crystallites, as proven by high-resolution transmission electron microscopy and electron energy loss spectroscopy. Molecular dynamic simulations show that diamond nucleation in the absence of hydrogen can occur by precipitation of diamond clusters in a dense amorphous carbon matrix generated by subplantation. Once the diamond clusters are formed, they can grow by thermal annealing consuming carbon atoms from the amorphous matrix. The results are applicable to other materials as well.
Resumo:
Considering the complexity of the general plasma techniques, pure single CH3+ ion beams were selected for the deposition of hydrogenated amorphous (a) carbon films with various ion energies and temperatures. Photoluminescence (PL) measurements have been performed on the films and violet/blue emission has been observed. The violet/blue emission is attributed to the small size distribution of sp(2) clusters and is related to the intrinsic properties of CH3 terminals, which lead to a very high barrier for the photoexcited electrons. Ion bombardment plays an important role in the PL behavior. This would provide further insight into the growth dynamics of a-C:H films. (C) 2002 American Institute of Physics.
Resumo:
The evolution of carbonization process on Si as a function of ion dose has been carried out by mass-selected ion-beam deposition technique. 3C-SiC layer has been obtained at low ion dose, which has been observed by reflection high energy electron diffraction and X-ray photoelectron spectroscopy (XPS). The chemical states of Si and carbon have also been examined as a function of ion dose by XPS. Carbon enrichment was found regardless of the used ion dose here, which may be due to the high deposition rate. The formation mechanism of SiC has also been discussed based on the subplantation process. The work will also provide further understanding of the ion-bombardment effect. (C) 2001 Published by Elsevier Science B.V.
Resumo:
It is believed that during the initial stage of diamond film growth by chemical-vapor deposition (CVD), ion bombardment is the main mechanism in the bias-enhanced-nucleation (BEN) process. To verify such a statement, experiments by using mass-separated ion-beam deposition were carried out, in which a pure carbon ion beam, with precisely defined low energy, was selected for investigating the ion-bombardment effect on a Si substrate. The results are similar to those of the BEN process, which supports the ion-bombardment-enhanced-nucleation mechanism. The formation of sp(3) bonding is based on the presumption that the time of stress generation is much shorter than the duration of the relaxation process. The ion-bombarded Si is expected to enhance the CVD diamond nucleation density because the film contains amorphous carbon embedded with nanocrystalline diamond and defective graphite. (C) 2001 American Institute of Physics.
Resumo:
By mass-selected low energy ion beam deposition, amorphous carbon film was obtained. X-ray diffraction, Raman and Auger electron spectroscopy depth line shape measurements showed that such carbon films contained diamond particles. The main growth mechanism is subsurface implantation. Furthermore, it was indicated in a different way that ion bombardment played a decisive role in bias enhanced nucleation of chemical vapor deposition diamond.