132 resultados para High Density Urban Form


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nation Natural Science Foundation of China 50672079 60676027 60837001 60776007; National Basic Research Program of China (973 Program) 2007CB613404; China-MOST International Sci & Tech Cooperation and Exchange 2008DFA51230

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-efficiency nanoelectrocatalyst based on high-density Au/Pt hybrid nanoparticles supported on a silica nanosphere (Au-Pt/SiO2) has been prepared by a facile wet chemical method. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy are employed to characterize the obtained Au-Pt/SiO2. It was found that each hybrid nanosphere is composed of high-density small Au/Pt hybrid nanoparticles with rough surfaces. These small Au/Pt hybrid nanoparticles interconnect and form a porous nanostructure, which provides highly accessible activity sites, as required for high electrocatalytic activity. We suggest that the particular morphology of the AuPt/SiO2 may be the reason for the high catalytic activity. Thus, this hybrid nanomaterial may find a potential application in fuel cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural evolution of high-density polyethylene subjected to uniaxial tensile deformation was investigated as a function of strain and after annealing at different temperatures using a scanning synchrotron small-angle X-ray scattering (SAXS) technique. The results confirm that in the course of tensile deformation intralamellar block slips were activated at small deformations followed by a stress-induced fragmentation and recrystallization process yielding thinner lamellae with their normal parallel to the stretching direction. The original sheared lamellae underwent severe internal deformation so that they were even less stable than the newly developed thinner lamellae. Accordingly, annealing results in a melting of the original crystallites even at moderate strains where the stress-induced fragmentation and recrystallization just sets in and generates a distinctly different form of lamellar stacks aligned along the drawing direction. It was found that the lamellae newly formed during stretching at moderate strains remain stable at lower temperature. Only at a very high annealing temperature of 120 degrees C can they be melted, leading to an isotropic distribution of the lamellar structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization behavior of high-density polyethylene (HDPE) on highly oriented isotactic polypropylene (iPP) at elevated temperatures (e.g., from 125 to 128 degrees C), was studied using transmission electron microscopy and electron diffraction. The results show that epitaxial crystallization of HDPE on the highly oriented iPP substrates occurs only in a thin layer which is in direct contact with the iPP substrate, when the HDPE is crystallized from the melt on the oriented iPP substrates at 125 degrees C. The critical layer thickness of the epitaxially crystallized HDPE is not more than 30 nm when the HDPE is isothermally crystallized on the oriented iPP substrates at 125 degrees C. When the crystallization temperature is above 125 degrees C, the HDPE crystallizes in the form of crystalline aggregates and a few individual crystalline lamellae. But both the crystalline aggregates and the individual crystalline lamellae have no epitaxial orientation relationship with the iPP substrate. This means that there exists a critical crystallization temperature for the occurrence of epitaxial crystallization of HDPE on the melt-drawn oriented iPP substrates (i.e., 125 degrees C). (C) 1997 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to develop the ultra-large scale integration(ULSI), low pressure and high density plasma apparatus are required for etching and deposit of thin films. To understand critical parameters such as the pressure, temperature, electrostatic potential and energy distribution of ions impacting on the wafer, it is necessary to understand how these parameters are influenced by the power input and neutral gas pressure. In the present work, a 2-D hybrid electron fluid-particle ion model has been developed to simulate one of the high density plasma sources-an Electron Cyclotron Resonance (ECR) plasma system with various pressures and power inputs in a non-uniform magnetic field. By means of numerical simulation, the energy distributions of argon ion impacting on the wafer are obtained and the plasma density, electron temperature and plasma electrostatic potential are plotted in 3-D. It is concluded that the plasma density depends mainly on both the power input and neutral gas pressure. However, the plasma potential and electron temperature can hardly be affected by the power input, they seem to be primarily dependent on the neutral gas pressure. The comparison shows that the simulation results are qualitatively in good agreement with the experiment measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion acceleration by ultrashort circularly polarized laser pulse in a solid-density target is investigated using two-dimensional particle-in-cell simulation. The ions are accelerated and compressed by the continuously extending space-charge field created by the evacuation and compression of the target electrons by the laser light pressure. For a sufficiently thin target, the accelerated and compressed ions can reach and exit from the rear surface as a high-density high-energy ion bunch. The peak ion energy depends on the target thickness and reaches maximum when the compressed ion layer can just reach the rear target surface. The compressed ion layer exhibits lateral striation which can be suppressed by using a sharp-rising laser pulse. (c) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Talbot scanning near-field optical microscopy (SNOM) method for non-contact evaluating of high-density gratings was described. This method combines the Talbot self-imaging effect of the gratings and the conventional SNOM technique without damage. The significant advantages of this method are its simple structure, reliable and fast measurement for the surface quality of the tested gratings. Experimental results of three different kinds of gratings were demonstrated to indicate that this method is effective for evaluation surface quality of high-density gratings. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the design, fabrication, and excellent performance of an optimized deep-etched high-density fused-silica transmission grating for use in dense wavelength division multiplexing (DWDM) systems. The fabricated optimized transmission grating exhibits an efficiency of 87.1% at a wavelength of 1550 nm. Inductively coupled plasma-etching technology was used to fabricate the grating. The deep-etched high-density fused-silica transmission grating is suitable for use in a DWDM system because of its high efficiency, low polarization-dependent loss, parallel demultiplexing, and stable optical performance. The fabricated deep-etched high-density fused-silica transmission gratings should play an important role in DWDM systems. (c) 2006 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Talbot effect of a grating with different flaws is analyzed with the finite-difference time-domain (FDTD) method. The FDTD method can show the exact near-field distribution of different flaws in a high-density grating, which is impossible to obtain with the conventional Fourier transform method. The numerical results indicate that if a grating is perfect, its Talbot imaging should also be perfect; if the grating is distorted, its Talbot imaging would also be distorted. Furthermore, we can evaluate high density gratings by detecting the near-field distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been described that the near-field images of a high-density grating at the half self-imaging distance could be different for TE and TM polarization states. We propose that the phases of the diffraction orders play an important role in such polarization dependence. The view is verified through the coincidence of the numerical result of finite-difference time-domain method and the reconstructed results from the rigorous coupled-wave analysis. Field distributions of TE and TM polarizations are given numerically for a grating with period d = 2.3 lambda, which are verified through experiments with the scanning near-field optical microscopy technique. The concept of phase interpretation not only explains the polarization dependence at the half self-imaging distance of gratings with a physical view, but also, it could be widely used to describe the near-field diffraction of a variety of periodic diffractive optical elements whose feature size comparable to the wavelength. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Talbot effect of a high-density grating under femtosecond laser illumination is analyzed with rigorous electromagnetic theory which is based on the Fourier decomposition and the rigorous coupled-wave analysis (RCWA). Numerical simulations show that the contrast of the Talbot images steadily decreases as the transmitted femtosecond laser pulses propagate forward and with wider spectrum width of the femtosecond laser pulses. The Talbot images of high-density gratings have much higher sensitivity of the spectrum widths of the incident laser pulses than those of the traditional low-density gratings. In experiments, the spectrums and the pulse widths of the incident pulses are measured with a frequency-resolved optical grating (FROG) apparatus. The Talbot images are detected by using a Talbot scanning near-field optical microscopy (Talbot-SNOM) technique, which are in coincidence with the numerical simulations. This effect should be useful for developing new femtosecond laser techniques and devices. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A relatively simple scheme for disk-type photopolymer high-density holographic storage based on angular and spatial multiplexing is described. The effects of the optical setup on the recording capacity and density are studied. Calculations and analysis show that this scheme is more effective than a scheme based on the spatioangular multiplexing for disk-type photopolymer high-density holographic storage, which has a limited medium thickness. Also an optimal beam recording angle exists to achieve maximum recording capacity and density. (C) 2002 Society of Photo-Optical Instrumentation Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of an apodizer with two parallel taper refractive surfaces is theoretically investigated for high-density optical storage. The apodizer may modulate an incident Gaussian beam into an annular beam. Simulation shows that with the increasing inner radius of the modulated beam, the focal spot shrinks obviously. The depolarization effect gets strong simultaneously, which induces the circular symmetry loss of the focal spot. In this process, pattern density of the orthogonal and longitudinal diffractive fields increases remarkably.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some kinds of rare earth beta-diketone complexes with blue-violet light absorption edge were synthesized using the ligands of thenoyltrifluoroacctone (HTTA), 2, 2'-dipyridyl (BIPY) and different metal ions (Gd3+, Sm3+ and La3+). Their contents, structures and optoelectronic parameters were monitored by elemental analysis, MS, IR and UV spectra. The solubility of rare earth beta-diketone complexes in 2, 2, 3, 3-tetrafluoro-1-propanol (TFP) and absorption properties of their films in the region 300-800 nm were measured. The influence on the difference of absorption maximum from rare earth beta-diketone complexes to beta-diketone ligand by different metal ions was studied. In addition, the thermal stability of rare earth beta-diketone complexes was also reported. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high-density holographic recording parameters of a novel two dyes-sensitized photopolymer under different exposure wavelengths are studied. The results show that the maximum diffraction efficiency, exposure sensitivity, maximum refraction index modulation, dynamic range, and the exposure time constant increases with the increase of the exposure wavelength. The analysis indicates that the scattering has an important role in the forming of the holographic grating. (c) 2005 Elsevier GmbH. All rights reserved.