64 resultados para Angular displacement


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a sinusoidal phase-modulating laser diode interferometer for measuring small angular displacement. The interferometer is based on a Fabry-Perot plate. It has a simple structure and is insensitive to external disturbance. Sinusoidal phase-modulating interferometry is used for improving the measurement accuracy. A charge-coupled device (CCD) image sensor is used for measuring the distance between the reflected beams from two faces of the Fabry-Perot plate. From the distance, the initial angle of incidence is calculated. Compared with Michelson interferometers and autocollimators, this interferometer has the advantage of compact size and simple structure. The numerical calculation and experimental results verify the usefulness of this novel interferometer. (C) 2004 Society of Photo-Optical Instrumentation Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A parallel plate interferometer with a reflecting mirror for measuring angular displacement is proposed. A deflection angle of a beam caused by an angular displacement is amplified by use of a reflecting mirror to increase the optical path difference (OPD) in the plane-parallel plate, which provides high sensitivity of the phase measurement. Detection of light transmitted through the plane-parallel plate with a position sensitive detector (PSD) enables high accurate measurement of the initial angle of incidence to the plane-parallel plate with insensitivity to stray light. The improved parallel plate interferometer achieves a measurement repeatability of 10(-8) rad. (C) 2007 The Optical Society of Japan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The measurement accuracy of a parallel-plate interferometer for angular displacement measurement is analyzed. The measurement accuracy of angular displacement is not only related to the accuracy of phase extraction, but also related to initial incident angle, refraction index and thickness of plane-parallel plate as well as wavelength's stability of laser diode, etc. Theoretical analysis and computer simulation show that the measurement error of the angular displacement bears a minimum value when choosing an optimal initial incident angle in a large range. These analytical results serve as a guide in practical measurement. In this interferometer, reducing the refraction index or increasing the thickness of the parallel plate can improve the measurement accuracy; and the relative error of the phase measurement is 3.0 x 10(-4) corresponding to 1 degrees C temperature variation. Based on these theoretical and experimental results, the measurement accuracy of the parallel-plate interferometer is up to an order of 10(-8) rad. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new phenomenological strain gradient theory for crystalline solid is proposed. It fits within the framework of general couple stress theory and involves a single material length scale Ics. In the present theory three rotational degrees of freedom omega (i) are introduced, which denote part of the material angular displacement theta (i) and are induced accompanying the plastic deformation. omega (i) has no direct dependence upon u(i) while theta = (1 /2) curl u. The strain energy density omega is assumed to consist of two parts: one is a function of the strain tensor epsilon (ij) and the curvature tensor chi (ij), where chi (ij) = omega (i,j); the other is a function of the relative rotation tensor alpha (ij). alpha (ij) = e(ijk) (omega (k) - theta (k)) plays the role of elastic rotation reason The anti-symmetric part of Cauchy stress tau (ij) is only the function of alpha (ij) and alpha (ij) has no effect on the symmetric part of Cauchy stress sigma (ij) and the couple stress m(ij). A minimum potential principle is developed for the strain gradient deformation theory. In the limit of vanishing l(cs), it reduces to the conventional counterparts: J(2) deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in detail. For simplicity, the elastic relation between the anti-symmetric part of Cauchy stress tau (ij), and alpha (ij) is established and only one elastic constant exists between the two tensors. Combining the same hardening law as that used in previously by other groups, the present theory is used to investigate two typical examples, i.e., thin metallic wire torsion and ultra-thin metallic beam bend, the analytical results agree well with the experiment results. While considering the, stretching gradient, a new hardening law is presented and used to analyze the two typical problems. The flow theory version of the present theory is also given.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ten kinds of the simplified Navier-Stokes equations (SNSE) are reviewed and also used to calculate the Jeffery-Hamel flow as well as to analyze briefly the seven kinds of flows to which the exact solutions of the complete Navier-Stokes equations (CNSE) have been found. Analysis shows that the actual differences among the solutions of the different SNSE can go beyond the range of the order of magnitude of Re-1/2 and result even in different flow patterns, therefore, how to choose the viscous terms included in the SNSE is worthy of notice where Re=S∞u∞ L/μ∞ is the Reynolds numbers. For the aforesaid eight kinds of flows, the solutions to the inner-outer-layer-matched SNSE and to the thin-layer-2-order SNSE agree completely with the exact solutions to CNSE. But the solutions to all the other SNSE are not completely consistent with the exact solutions to CNSE and not a few of them are actually the solutions of the classical boundary layer theory. The innerouter-layer-matched SNSE contains the shear stress causing angular displacement of the inormal axis with respect to the streamwise axis and the normal stress causing expansion-contraction in the direction of the normal axis and the viscous terms being of the order of magnitude of the normal stress; and it can also reasonably treat the inertial terms as well as the relation between the viscous and inertial terms. Therefore, it seems promising in respects of both mechanics and mathematics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

提出一种基于平行平板干涉仪的改进型角度测量方法。为了实现较大的偏转角度测量,该平行平板干涉仪引入了一位置探测系统。平面反射镜的引入提高了角度测量的分辨率。实验验证了可在近3度的范围内实现被测偏转角度的高精度测量。并且作为一位相调制型干涉仪,其小角位移测量实验的重复精度可达5.5×10^(-8)rad。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

提出一种可提高平行平板角位移干涉测量仪测量精度的优化设计方法。对角位移干涉测量系统进行了误差分析,讨论了影响角位移测量精度的主要因素。分析了在干涉仪光路中入射到平行平板上的初始入射角度、平行平板的折射率以及厚度等参数的选取对角位移测量精度的影响。结果表明,优化选取最佳的初始入射角度以及元件参数,并在干涉光路中附加引入一平面反射镜形成光程差放大系统,可实现的角位移测量精度达10-8 rad数量级。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

在一种已有的角位移干涉测量技术的基础上,提出一种改进的角位移测量方法。通过选择合适的初始入射角,使从平板前后表面反射的两光束实现剪切干涉。采用一维位置探测器测量光束经透镜会聚后在探测器光敏面上的光点偏移量。根据干涉信号的相位和光点偏移量可以计算出被测物体的角位移。在该测量方案中,引入的一平面反射镜与被测物体的反射面形成光程差放大系统,提高了角位移测量灵敏度。分析了初始入射角对剪切比的影响,并讨论了基于该方案的角位移测量精度。实验结果表明,基于该技术的角位移重复测量精度达到10-8 rad数量级。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the characteristics of water wave induced liquefaction in highly saturated sand in vertical direction, a one-dimensional model of highly saturated sand to water pressure oscillation is presented based oil the two-phase continuous media theory. The development of the effective stresses and the liquefaction thickness are analyzed. It is shown that water pressure oscillating loading affects liquefaction severely and the developing rate of liquefaction increases with the decreasing of the sand strength or the increasing of the loading strength. It is shown also that there is obvious phase lag in the sand Column. If the sand permeability is non-uniform, the pore pressure and the strain rise sharply at which the smallest permeability occurs. This solution may explain Why the fracture occurs in the sand column in some conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the three-dimensional elastic inclusion model proposed by Dobrovolskii, we developed a rheological inclusion model to study earthquake preparation processes. By using the Corresponding Principle in the theory of rheologic mechanics, we derived the analytic expressions of viscoelastic displacement U(r, t) , V(r, t) and W(r, t), normal strains epsilon(xx) (r, t), epsilon(yy) (r, t) and epsilon(zz) (r, t) and the bulk strain theta (r, t) at an arbitrary point (x, y, z) in three directions of X axis, Y axis and Z axis produced by a three-dimensional inclusion in the semi-infinite rheologic medium defined by the standard linear rheologic model. Subsequent to the spatial-temporal variation of bulk strain being computed on the ground produced by such a spherical rheologic inclusion, interesting results are obtained, suggesting that the bulk strain produced by a hard inclusion change with time according to three stages (alpha, beta, gamma) with different characteristics, similar to that of geodetic deformation observations, but different with the results of a soft inclusion. These theoretical results can be used to explain the characteristics of spatial-temporal evolution, patterns, quadrant-distribution of earthquake precursors, the changeability, spontaneity and complexity of short-term and imminent-term precursors. It offers a theoretical base to build physical models for earthquake precursors and to predict the earthquakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach employing displacement-stress dual criteria for static shape control is presented. This approach is based on normal displacement control, and stress modification is considered in the whole optimization process to control high stress in the local domain. Analysis results show that not only is the stress reduced but al so that the controlled surface becomes smoother than before.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the influence of the vertical vibration loading on the liquefaction of saturated sand, one dimensional model for the saturated sand with a vertical vibration is presented based on the two phase continuous media theory. The development of the liquefaction and the liquefaction region are analyzed. It is shown that the vertical vibration loading could induce liquefaction. The rate of the liquefaction increases with the increase of the initial limit strain or initial porosity or amplitude and frequency of loading, and increases with the decrease of the permeability or initial modulus. It is shown also that there is a phase lag in the sand column. When the sand permeability distribution is non-uniform, the pore pressure and the strain will rise sharply where the permeability is the smallest, and fracture might be induced. With the development of liquefaction, the strength of the soil foundation becomes smaller and smaller. In the limiting case, landslides or debris flows could occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for displacement-controlled indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. While the same expression is well known for indentation in elastic and in elastic–plastic solids, we show that it is also true for indentation in linear viscoelastic solids, provided that the unloading rate is sufficiently fast. When the unloading rate is slow, a “hold” period between loading and unloading can be used to provide a correction term for the initial unloading slope equation. Finite element calculations are used to illustrate the methods of fast unloading and “hold-at-the-maximum-indenter-displacement” for determining the instantaneous modulus using spherical indenters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for displacement-controlled indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. While the same expression is well known for indentation in elastic and in elastic-plastic solids, we show that it is also true for indentation in linear viscoelastic solids, provided that the unloading rate is sufficiently fast. When the unloading rate is slow, a "hold" period between loading and unloading can be used to provide a correction term for the initial unloading slope equation. Finite element calculations are used to illustrate the methods of fast unloading and "hold-at-the-maximum-indenter-displacement" for determining the instantaneous modulus using spherical indenters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the three-dimensional elastic inclusion model proposed by Dobrovolskii, we developed a rheological inclusion model to study earthquake preparation processes. By using the Corresponding Principle in the theory of rheologic mechanics, we derived the analytic expressions of viscoelastic displacement U(r, t) , V(r, t) and W(r, t), normal strains epsilon(xx) (r, t), epsilon(yy) (r, t) and epsilon(zz) (r, t) and the bulk strain theta (r, t) at an arbitrary point (x, y, z) in three directions of X axis, Y axis and Z axis produced by a three-dimensional inclusion in the semi-infinite rheologic medium defined by the standard linear rheologic model. Subsequent to the spatial-temporal variation of bulk strain being computed on the ground produced by such a spherical rheologic inclusion, interesting results are obtained, suggesting that the bulk strain produced by a hard inclusion change with time according to three stages (alpha, beta, gamma) with different characteristics, similar to that of geodetic deformation observations, but different with the results of a soft inclusion. These theoretical results can be used to explain the characteristics of spatial-temporal evolution, patterns, quadrant-distribution of earthquake precursors, the changeability, spontaneity and complexity of short-term and imminent-term precursors. It offers a theoretical base to build physical models for earthquake precursors and to predict the earthquakes.