98 resultados para oil source
Resumo:
The problem of hydrolysis of lipids and consequent accumulation of free fatty acids and development of rancidity due to oxidation of the lipids are major problems in frozen storage of oil sardine (Sardinella longiceps). The course of the phospholipid breakdown, production of free fatty acids and the changes taking place in the major unsaturated fatty acids during frozen storage are described in this paper. The rate of free fatty acid production is faster in the fish, with the higher fat content. Unlike in lean fish, the neutral lipids are found to contribute substantially to the free fatty acid production. The fatty acids most affected during storage are C sub(20:5) and C sub(22:6). The polyene indices were found to decrease during storage. These effects are more pronounced in the fish with the higher fat content.
Resumo:
A method is reported for smoke curing of oil sardine (Sardinella longiceps) by dry salting in the ratio of 1:6 (salt to fish), followed by smoking in the traditional smoke chamber in two stages, (1) at 45°C for 3h hand (2) at 75°C for 2h with smoke generated from coconut husk, wood shavings and saw dust in 2:2:1 proportion. The product obtained had good odour, flavour, golden yellow colour and a shelf-life of 8 weeks at room temperature (26 to 28°C)
Resumo:
This paper provides the experimental details of canning of tuna in oil. The species utilized in the experiments were the skipjack (Katsuwonus pelamis), yellowfin tuna (Neothunnus macropterus) and bigeye tuna Parathunnus obesus mebachi) ranging it weight from 2.5-82 kg. The method worked out is applicable to all species of different size grades.
Resumo:
The influence of different pre-freezing ice storage periods on the biochemical and organoleptic qualities of Indian oil sardines (Sardinella longiceps) in the individual quick frozen (IQF) and block frozen (BF) forms and frozen storage at temperatures of -12°C and -23°C was studied. The shelf-life of the sardines varied between 24 and 2 weeks for samples iced for 0 to 5 days prior to freezing. The deterioration in quality was accompanied by considerable increase in the peroxide value (PV) and free fatty acid (FFA) content and decrease in salt extractability of the proteins. These changes were more rapid at -12°C than at -23°C. BF sardines appeared to be better than IQF samples with respect to the biochemical changes although the differences in overall organoleptic quality were not significant.
Resumo:
An elaborate study was made on the qualitative and quantitative seasonal variations in the bacterial flora of fresh oil sardines and their biochemical reactions. It was observed that the total bacterial loads and their phosphorescent and biochemical characters were influenced by changes in seasons. During monsoon season total bacterial count was high. Mesophiles predominated during summer, but phosphorescent bacteria were less. Winter favoured the selection of biochemically less active groups of bacteria.
Resumo:
Oil sardine (Sardinella longiceps) is widely reported from the Indian Ocean and southeast Asia coasts. It is found, with other less important spp of Sardinella, around both coasts of India. Landings have shown wide variations from yr to yr. Figures were 7412 tons in 1956 and 301,641 tons in 1968. Various possible reasons for this are noted. The main fishery is concentrated in coastal waters 12-15 km from shore in waters up to 15 m deep. The gears used are mostly seine nets. Though the fish has a good protein value, its prices do not compare well to other fish, often due to handling and preservation difficulties. Problems encountered during preservation and transportation of the fish are considered. These include bursting and rancidity.
Resumo:
Commercial canning of oil sardine (Sardinella longiceps) in India is a relatively new procedure. Although 7 firms are engaged in canning this compares poorly with the abundance of the fish. There are often wide variations in the quality of the canned fish and important chemical and physical variations occur in the product once canned. A description of the canning process is given, and production figures compared to those of other countries. Production figures for 1965 to 1969 are given. These show that production increased from 1.2 to 1.5 million cans, but that there was a peak in 1967 when 3.2 million can s were produced. Exports of canned marine fish by country, and production of caned sardine by country from 1965 to 1970 are tabulated. The types of containers used and the feasibility of exporting canned fish are considered. Finally, the preparation of cured and smoked products is discussed briefly.
Resumo:
The author reviews the advances in the oil and meal industries related to the oil sardine fishery (Sardinella longiceps) since the 1920s. Data on the production of by-produced produced in Kerala over the period 1964- 69 are tabulated. Details of the properties of the commercial oil are given, and the values compared to those for other similar oils. The use of oil sardine for industrial purposes - the oil has been used to cure leather, temper metals and as fungicides or insecticides - and the production of fish meal and fish protein concentrate is considered.
Resumo:
A simple and economic process for canning of oil sardine (Sardinella longiceps) in its own juice having very good organoleptic characteristics has been developed. The process consists in dipping eviscerated, scaled and cleaned fish in brine containing potash alum and citric acid, packing in cans, exhausting and seaming without addition of any filling medium and heat processing.
Resumo:
Canning operations suitable for packing mackerel (Rastrelliger kanagurta) in the form of skinless and boneless fillets in oil were studied and the process standardised. The technique of lye peeling for skin removal could be successfully applied. The storage life of the final product was tested over a period of one year and found to be quite comparable to other similar fish products.
Resumo:
An antiserum was raised in a rabbit against 0 panel red cells of mackerel. The erythrocytes of oil sardine and mackerel were tested against human blood typing sera anti A and B and also the test serum of rabbit which revealed the presence of antigens A and B. In addition, an antigen common to both the fishes and human A, B and 0 panel red cells was noted but not identifiable. The blood group B did not manifest itself clearly either in oil sardine or mackerel. The blood groups A, AB and 0 indicated the existence of genetically different groups of oil sardine and mackerel. Isoagglutinin tests revealed the presence of a reciprocal relationship with antigens A and B in both these fishes.
Resumo:
Electrophoresis of eye lens proteins of oil sardine and mackerel showed separation of proteins into three and four components, indicating the heterogeneous nature of the population.
Resumo:
Oil sardine blood tests against human typing sera indicated A-positive, A-negative and B-negative. The blood of mackerel is antigenically negative both for A and B. Electrophoretic studies on serum proteins revealed the existence of genetica1ly different groups of oil sardine and mackerel on the south-west coast of India.
Resumo:
A method of preparation of smoke cured fillets of oil sardine is described. Various procedural steps like brining, smoking, packaging etc. have been described and the shelf life assessed. Sodium propionate treatment is recommended to enhance storage life; BHA to control rancidity; and thermal treatment to overcome the insect infestation. The product has good consumer appeal.
Resumo:
A process for canning smoked oil sardine (Sardinella longiceps) is described. Cold blanching of dressed fish in brine, smoking followed by drying in hot air or cooking in steam to reduce the moisture content to the required level and subsequent canning yields product with good organoleptic properties. Coconut husk is used as source of smoke.