14 resultados para nanocrystalline GaAs1-xSbx

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The origin of the modified optical properties of InAs/GaAs quantum dots (QD) capped with a thin GaAs1−xSbx layer is analyzed in terms of the band structure. To do so, the size, shape, and composition of the QDs and capping layer are determined through cross-sectional scanning tunnelling microscopy and used as input parameters in an 8 × 8 k·p model. As the Sb content is increased, there are two competing effects determining carrier confinement and the oscillator strength: the increased QD height and reduced strain on one side and the reduced QD-capping layer valence band offset on the other. Nevertheless, the observed evolution of the photoluminescence (PL) intensity with Sb cannot be explained in terms of the oscillator strength between ground states, which decreases dramatically for Sb > 16%, where the band alignment becomes type II with the hole wavefunction localized outside the QD in the capping layer. Contrary to this behaviour, the PL intensity in the type II QDs is similar (at 15 K) or even larger (at room temperature) than in the type I Sb-free reference QDs. This indicates that the PL efficiency is dominated by carrier dynamics, which is altered by the presence of the GaAsSb capping layer. In particular, the presence of Sb leads to an enhanced PL thermal stability. From the comparison between the activation energies for thermal quenching of the PL and the modelled band structure, the main carrier escape mechanisms are suggested. In standard GaAs-capped QDs, escape of both electrons and holes to the GaAs barrier is the main PL quenching mechanism. For small-moderate Sb (<16%) for which the type I band alignment is kept, electrons escape to the GaAs barrier and holes escape to the GaAsSb capping layer, where redistribution and retraping processes can take place. For Sb contents above 16% (type-II region), holes remain in the GaAsSb layer and the escape of electrons from the QD to the GaAs barrier is most likely the dominant PL quenching mechanism. This means that electrons and holes behave dynamically as uncorrelated pairs in both the type-I and type-II structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

InAs/GaAs1−xSbx Quantum Dot (QD) infrared photodetectors are analyzed by photocurrent spectroscopy. We observe that the integrated responsivity of the devices is improved with the increasing Sb mole fraction in the capping layer, up to 4.2 times for x = 17%. Since the QD layers are not vertically aligned, the vertical transport of the carriers photogenerated within the QDs takes place mainly through the bulk material and the wetting layer of the additional QD regions. The lower thickness of the wetting layer for high Sb contents results in a reduced capture probability of the photocarriers, thus increasing the photoconductive gain and hence, the responsivity of the device. The growth of not vertically aligned consecutive QD layers with a thinner wetting layer opens a possibility to improve the performance of quantum dot infrared photodetectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a wide-bandgap semiconductor, gallium nitride (GaN) is an attractive material for next-generation power devices. To date, the capabilities of GaN-based high electron mobility transistors (HEMTs) have been limited by self-heating effects (drain current decreases due to phonon scattering-induced carrier velocity reductions at high drain fields). Despite awareness of this, attempts to mitigate thermal impairment have been limited due to the difficulties involved with placing high thermal conductivity materials close to heat sources in the device. Heat spreading schemes have involved growth of AIGaN/GaN on single crystal or CVD diamond, or capping of fullyprocessed HEMTs using nanocrystalline diamond (NCD). All approaches have suffered from reduced HEMT performance or limited substrate size. Recently, a "gate after diamond" approach has been successfully demonstrated to improve the thermal budget of the process by depositing NCD before the thermally sensitive Schottky gate and also to enable large-area diamond implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduced performance in Gallium Nitride (GaN) based high electron mobility transistors (HEMTs) as a result of self-heating has been well-documented. A new approach, termed “diamond-before-gate" is shown to improve the thermal budget of the deposition process and enables large area diamond without degrading the gate metal NCD capped devices had a 20% lower channel temperature at equivalent power dissipation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of their remarkable mechanical properties, nanocrystalline metals have been the focus of much research in recent years. Refining their grain size to the nanometer range (<100 nm) effectively reduces their dislocation mobility, thus achieving very high yield strength and surface hardness—as predicted by the Hall–Petch relation—as well as higher strain-rate sensitivity. Recent works have additionally suggested that nanocrystalline metals exhibit an even higher compressive strength under shock loading. However, the increase in strength of these materials is generally accompanied by an important reduction in ductility. As an alternative, efforts have been focused on ultrafine crystals, i.e. polycrystals with a grain size in the range of 500 nm to 1 μm, in which “growth twins” (twins introduced inside the grain before deformation) act as barriers against dislocation movement, thus increasing the strength in a similar way as nanocrystals but without significant loss of ductility. Due to their outstanding mechanical properties, both nanocrystalline and nanotwinned ultrafine crystalline steels appear to be relevant candidates for ballistic protection. The aim of the present work is to compare their ballistic performance against coarse-grained steel, as well as to identify the effect of the hybridization with a carbon fiber–epoxy composite layer. Hybridization is proposed as a way to improve the nanocrystalline brittle properties in a similar way as is done with ceramics in other protection systems. The experimental campaign is finally complemented by numerical simulations to help identify some of the intrinsic deformation mechanisms not observable experimentally. As a conclusion, nanocrystalline and nanotwinned ultrafine crystals show a lower energy absorption than coarse-grained steel under ballistic loading, but under equal impact conditions with no penetration, deformation in the impact direction is smaller by nearly 40%. This a priori surprising difference in the energy absorption is rationalized by the more important local contribution of the deviatoric stress vs. volumetric stress under impact than under uniaxial deformation. Ultimately, the deformation advantage could be exploited in the future for personal protection systems where a small deformation under impact is of key importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The last few years have highlighted the existence of two relevant length scales in the quest to ultrahigh-strength polycrystalline metals. Whereas the microstructural length scale – e.g. grain or twin size – has mainly be linked to the well-established Hall–Petch relationship, the sample length scale – e.g. nanopillar size – has also proven to be at least as relevant, especially in microscale structures. In this letter, a series of ballistic tests on functionally graded nanocrystalline plates are used as a basis for the justification of a “grain size gradient length scale” as an additional ballistic properties optimization parameter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The AlN/diamond structure is an attractive combination for SAW devices and its application at high frequencies. In this work, the synthesis of AlN thin films by reactive sputtering has been optimized on diamond substrates in order to process high frequency devices. Polished microcrystalline and as-grown nanocrystalline diamond substrates have been used to deposit AlN of different thickness under equal sputtering conditions. For the smoother substrates, the FWHM of the rocking curve of the (002) AlN peak varies from 3.8° to 2.7° with increasing power. SAW one port resonators have been fabricated on these films, whose electrical characterization (in terms of S11 parameters) is reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of AlN on diamond is a great challenge, not only because of the between an AlN/diamond interface, but also because of the high surface roughness of the diamond layers [8, 9]. In the case of microcrystalline diamond, the last problem was solved by polishing. However, polishing nanocrystalline diamond is not straightforward. For the diamond synthesis by CVD, silicon was used as a substrate. The diamond/Si interface presents a smoother diamond than the diamond/air interface. This paper reports on the fabrication of high frequency SAW resonators using AlN/Diamond/Si technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, an AlN/free-standing nanocrystalline diamond (NCD) system is proposed in order to process high frequency surface acoustic wave (SAW) resonators for sensing applications. The main problem of synthetic diamond is its high surface roughness that worsens the sputtered AlN quality and hence the device response. In order to study the feasibility of this structure, AlN films from 150 nm up to 1200 nm thick have been deposited on free-standing NCD. We have then analysed the influence of the AlN layer thickness on its crystal quality and device response. Optimized thin films of 300 nm have been used to fabricate of one-port SAW resonators operating in the 10–14 GHz frequency range. A SAW based sensor pressure with a sensibility of 0.33 MHz/bar has been fabricated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays one of the challenges of materials science is to find new technologies that will be able to make the most of renewable energies. An example of new proposals in this field are the intermediate-band (IB) materials, which promise higher efficiencies in photovoltaic applications (through the intermediate band solar cells), or in heterogeneous photocatalysis (using nanoparticles of them, for the light-induced degradation of pollutants or for the efficient photoevolution of hydrogen from water). An IB material consists in a semiconductor in which gap a new level is introduced [1], the intermediate band (IB), which should be partially filled by electrons and completely separated of the valence band (VB) and of the conduction band (CB). This scheme (figure 1) allows an electron from the VB to be promoted to the IB, and from the latter to the CB, upon absorption of photons with energy below the band gap Eg, so that energy can be absorbed in a wider range of the solar spectrum and a higher current can be obtained without sacrificing the photovoltage (or the chemical driving force) corresponding to the full bandgap Eg, thus increasing the overall efficiency. This concept, applied to photocatalysis, would allow using photons of a wider visible range while keeping the same redox capacity. It is important to note that this concept differs from the classic photocatalyst doping principle, which essentially tries just to decrease the bandgap. This new type of materials would keep the full bandgap potential but would use also lower energy photons. In our group several IB materials have been proposed, mainly for the photovoltaic application, based on extensively doping known semiconductors with transition metals [2], examining with DFT calculations their electronic structures. Here we refer to In2S3 and SnS2, which contain octahedral cations; when doped with Ti or V an IB is formed according to quantum calculations (see e.g. figure 2). We have used a solvotermal synthesis method to prepare in nanocrystalline form the In2S3 thiospinel and the layered compound SnS2 (which when undoped have bandgaps of 2.0 and 2.2 eV respectively) where the cation is substituted by vanadium at a ?10% level. This substitution has been studied, characterizing the materials by different physical and chemical techniques (TXRF, XRD, HR-TEM/EDS) (see e.g. figure 3) and verifying with UV spectrometry that this substitution introduces in the spectrum the sub-bandgap features predicted by the calculations (figure 4). For both sulphide type nanoparticles (doped and undoped) the photocatalytic activity was studied by following at room temperature the oxidation of formic acid in aqueous suspension, a simple reaction which is easily monitored by UV-Vis spectroscopy. The spectral response of the process is measured using a collection of band pass filters that allow only some wavelengths into the reaction system. Thanks to this method the spectral range in which the materials are active in the photodecomposition (which coincides with the band gap for the undoped samples) can be checked, proving that for the vanadium substituted samples this range is increased, making possible to cover all the visible light range. Furthermore it is checked that these new materials are more photocorrosion resistant than the toxic CdS witch is a well know compound frequently used in tests of visible light photocatalysis. These materials are thus promising not only for degradation of pollutants (or for photovoltaic cells) but also for efficient photoevolution of hydrogen from water; work in this direction is now being pursued.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of the temperature on the compressive stress–strain behavior of Al/SiC nanoscale multilayers was studied by means of micropillar compression tests at 23 °C and 100 °C. The multilayers (composed of alternating layers of 60 nm in thickness of nanocrystalline Al and amorphous SiC) showed a very large hardening rate at 23 °C, which led to a flow stress of 3.1 ± 0.2 GPa at 8% strain. However, the flow stress (and the hardening rate) was reduced by 50% at 100 °C. Plastic deformation of the Al layers was the dominant deformation mechanism at both temperatures, but the Al layers were extruded out of the micropillar at 100 °C, while Al plastic flow was constrained by the SiC elastic layers at 23 °C. Finite element simulations of the micropillar compression test indicated the role played by different factors (flow stress of Al, interface strength and friction coefficient) on the mechanical behavior and were able to rationalize the differences in the stress–strain curves between 23 °C and 100 °C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Related with the detection of weak magnetic fields, the anisotropic magnetoresistive (AMR) effect is widely utilized in sensor applications. Exchange coupling between an antiferromagnet (AF) and the ferromagnet (FM) has been known as a significant parameter in the field sensitivity of magnetoresistance because of pinning effects on magnetic domain in FM layer by the bias field in AF. In this work we have studied the thermal evolution of the magnetization reversal processes in nanocrystalline exchange biased Ni80Fe20/Ni-O bilayers with large training effects and we report the anisotropic magnetoresistance ratio arising from field orientation in the bilayer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Related with the detection of weak magnetic fields, the anisotropic magnetoresistive(AMR) effect is widely utilized in sensor applications. Exchange coupling between an antiferromagnet (AF) and the ferromagnet (FM) has been known as a significant parameter in the field sensitivity of magnetoresistance because of pinning effects on magnetic domain in FM layer by the bias field in AF. In this work we have studied the thermal evolution of the magnetization reversal processes in nanocrystalline exchange biased Ni80Fe20/Ni-O bilayers with large training effects and we report the anisotropic magnetoresistance ratio arising from field orientation in the bilayer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los sistemas micro electro mecánicos (MEMS) han demostrado ser una exitosa familia de dispositivos que pueden usarse como plataforma para el desarrollo de dispositivos con aplicaciones en óptica, comunicaciones, procesado de señal y sensorización. Los dispositivos MEMS estándar suelen estar fabricados usando tecnología de silicio. Sin embargo, el rendimiento de estos MEMS se puede mejorar si se usan otros materiales. Por ejemplo, el diamante nanocristalino (NCD) ofrece unas excelentes propiedades mecánicas, transparencia y una superficie fácil de funcionalizar. Por otro lado, el sistema de materiales (In; Ga; Al)N, los materiales IIIN, se pueden usar para producir estructuras monocristalinas con alta sensibilidad mecánica y química. Además, el AlN se puede depositar por pulverización catódica reactiva sobre varios substratos, incluyendo NCD, para formar capas policristalinas orientadas con alta respuesta piezoeléctrica. Adicionalmente, tanto el NCD como los materiales III-N muestran una gran estabilidad térmica y química, lo que los hace una elección idónea para desarrollar dispositivos para aplicaciones para alta temperatura, ambientes agresivos e incluso para aplicaciones biocompatibles. En esta tesis se han usado estos materiales para el diseño y medición de demostradores tecnológicos. Se han perseguido tres objetivos principales: _ Desarrollo de unos procesos de fabricación apropiados. _ Medición de las propiedades mecánicas de los materiales y de los factores que limitan el rendimiento de los dispositivos. _ Usar los datos medidos para desarrollar dispositivos demostradores complejos. En la primera parte de esta tesis se han estudiado varias técnicas de fabricación. La estabilidad de estos materiales impide el ataque y dificulta la producción de estructuras suspendidas. Los primeros capítulos de esta disertación se dedican al desarrollo de unos procesos de transferencia de patrones por ataque seco y a la optimización del ataque húmedo sacrificial de varios substratos propuestos. Los resultados de los procedimientos de ataque se presentan y se describe la optimización de las técnicas para la fabricación de estructuras suspendidas de NCD y materiales III-N. En un capítulo posterior se estudia el crecimiento de AlN por pulverización catódica. Como se ha calculado en esta disertación para obtener una actuación eficiente de MEMS, las capas de AlN han de ser finas, típicamente d < 200 nm, lo que supone serias dificultades para la obtención de capas orientadas con respuesta piezoeléctrica. Las condiciones de depósito se han mapeado para identificar las fronteras que proporcionan el crecimiento de material orientado desde los primeros pasos del proceso. Además, durante la optimización de los procesos de ataque se estudió un procedimiento para fabricar películas de GaN nanoporoso. Estas capas porosas pueden servir como capas sacrificiales para la fabricación de estructuras suspendidas de GaN con baja tensión residual o como capas para mejorar la funcionalización superficial de sensores químicos o biológicos. El proceso de inducción de poros se discutirá y también se presentarán experimentos de ataque y funcionalización. En segundo lugar, se han determinado las propiedades mecánicas del NCD y de los materiales III-N. Se han fabricado varias estructuras suspendidas para la medición del módulo de Young y de la tensión residual. Además, las estructuras de NCD se midieron en resonancia para calcular el rendimiento de los dispositivos en términos de frecuencia y factor de calidad. Se identificaron los factores intrínsecos y extrínsecos que limitan ambas figuras de mérito y se han desarrollado modelos para considerar estas imperfecciones en las etapas de diseño de los dispositivos. Por otra parte, los materiales III-N normalmente presentan grandes gradientes de deformación residual que causan la deformación de las estructuras al ser liberadas. Se han medido y modelado estos efectos para los tres materiales binarios del sistema para proporcionar puntos de interpolación que permitan predecir las características de las aleaciones del sistema III-N. Por último, los datos recabados se han usado para desarrollar modelos analíticos y numéricos para el diseño de varios dispositivos. Se han estudiado las propiedades de transducción y se proporcionan topologías optimizadas. En el último capítulo de esta disertación se presentan diseños optimizados de los siguientes dispositivos: _ Traviesas y voladizos de AlN=NCD con actuación piezoeléctrica aplicados a nanoconmutadores de RF para señales de alta potencia. _ Membranas circulares de AlN=NCD con actuación piezoeléctrica aplicadas a lentes sintonizables. _ Filtros ópticos Fabry-Pérot basados en cavidades aéreas y membranas de GaN actuadas electrostáticamente. En resumen, se han desarrollado unos nuevos procedimientos optimizados para la fabricación de estructuras de NCD y materiales III-N. Estas técnicas se han usado para producir estructuras que llevaron a la determinación de las principales propiedades mecánicas y de los parámetros de los dispositivos necesarios para el diseño de MEMS. Finalmente, los datos obtenidos se han usado para el diseño optimizado de varios dispositivos demostradores. ABSTRACT Micro Electro Mechanical Systems (MEMS) have proven to be a successful family of devices that can be used as a platform for the development of devices with applications in optics, communications, signal processing and sensorics. Standard MEMS devices are usually fabricated using silicon based materials. However, the performance of these MEMS can be improved if other material systems are used. For instance, nanocrystalline diamond (NCD) offers excellent mechanical properties, optical transparency and ease of surface functionalization. On the other hand, the (In; Ga; Al)N material system, the III-N materials, can be used to produce single crystal structures with high mechanical and chemical sensitivity. Also, AlN can be deposited by reactive sputtering on various substrates, including NCD, to form oriented polycrystalline layers with high piezoelectric response. In addition, both NCD and III-N materials exhibit high thermal and chemical stability, which makes these material the perfect choice for the development of devices for high temperatures, harsh environments and even biocompatible applications. In this thesis these materials have been used for the design and measurement of technological demonstrators. Three main objectives have been pursued: _ Development of suitable fabrication processes. _ Measurement of the material mechanical properties and device performance limiting factors. _ Use the gathered data to design complex demonstrator devices. In a first part of the thesis several fabrication processes have been addressed. The stability of these materials hinders the etching of the layers and hampers the production of free standing structures. The first chapters of this dissertation are devoted to the development of a dry patterning etching process and to sacrificial etching optimization of several proposed substrates. The results of the etching processes are presented and the optimization of the technique for the manufacturing of NCD and III-N free standing structures is described. In a later chapter, sputtering growth of thin AlN layers is studied. As calculated in this dissertation, for efficient MEMS piezoelectric actuation the AlN layers have to be very thin, typically d < 200 nm, which poses serious difficulties to the production of c-axis oriented material with piezoelectric response. The deposition conditions have been mapped in order to identify the boundaries that give rise to the growth of c-axis oriented material from the first deposition stages. Additionally, during the etching optimization a procedure for fabricating nanoporous GaN layers was also studied. Such porous layers can serve as a sacrificial layer for the release of low stressed GaN devices or as a functionalization enhancement layer for chemical and biological sensors. The pore induction process will be discussed and etching and functionalization trials are presented. Secondly, the mechanical properties of NCD and III-N materials have been determined. Several free standing structures were fabricated for the measurement of the material Young’s modulus and residual stress. In addition, NCD structures were measured under resonance in order to calculate the device performance in terms of frequency and quality factor. Intrinsic and extrinsic limiting factors for both figures were identified and models have been developed in order to take into account these imperfections in the device design stages. On the other hand, III-N materials usually present large strain gradients that lead to device deformation after release. These effects have been measured and modeled for the three binary materials of the system in order to provide the interpolation points for predicting the behavior of the III-N alloys. Finally, the gathered data has been used for developing analytic and numeric models for the design of various devices. The transduction properties are studied and optimized topologies are provided. Optimized design of the following devices is presented at the last chapter of this dissertation: _ AlN=NCD piezoelectrically actuated beams applied to RF nanoswitches for large power signals. _ AlN=NCD piezoelectrically actuated circular membranes applied to tunable lenses. _ GaN based air gap tunable optical Fabry-Pérot filters with electrostatic actuation. On the whole, new optimized fabrication processes has been developed for the fabrication of NCD and III-N MEMS structures. These processing techniques was used to produce structures that led to the determination of the main mechanical properties and device parameters needed for MEMS design. Lastly, the gathered data was used for the design of various optimized demonstrator devices.