42 resultados para molecular beam epitaxy (MBE)
em Universidad Politécnica de Madrid
Resumo:
This work studies the effect of the growth temperature on the morphology and emission characteristics of self-assembled InGaN nanocolumns grown by plasma assisted molecular beam epitaxy. Morphology changes are assessed by scanning electron microscopy, while emission is measured by photoluminescence. Within the growth temperature range of 750 to 650 °C, an increase in In incorporation for decreasing temperature is observed. This effect allows tailoring the InGaN nanocolumns emission line shape by using temperature gradients during growth. Depending on the gradient rate, span, and sign, broad emission line shapes are obtained, covering the yellow to green range, even yielding white emission
Resumo:
This work reports on the growth by molecular beam epitaxy and characterization of InN/InGaN multiple quantum wells (MQWs) emitting at 1.5 μm. X-ray diffraction (XRD) spectra show satellite peaks up to the second order. Estimated values of well (3 nm) and barrier (9 nm) thicknesses were derived from transmission electron microscopy and the fit between experimental data and simulated XRD spectra. Transmission electron microscopy and XRD simulations also confirmed that the InGaN barriers are relaxed with respect to the GaN template, while the InN MQWs grew under biaxial compression on the InGaN barriers. Low temperature (14 K) photoluminescence measurements reveal an emission from the InN MQWs at 1.5 μm. Measurements as a function of temperature indicate the existence of localized states, probably due to InN quantum wells’ thickness fluctuations as observed by transmission electron microscopy.
Resumo:
We present a study of the optical properties of GaN/AlN and InGaN/GaN quantum dot (QD) superlattices grown via plasma-assisted molecular-beam epitaxy, as compared to their quantum well (QW) counterparts. The three-dimensional/two-dimensional nature of the structures has been verified using atomic force microscopy and transmission electron microscopy. The QD superlattices present higher internal quantum efficiency as compared to the respective QWs as a result of the three-dimensional carrier localization in the islands. In the QW samples, photoluminescence (PL) measurements point out a certain degree of carrier localization due to structural defects or thickness fluctuations, which is more pronounced in InGaN/GaN QWs due to alloy inhomogeneity. In the case of the QD stacks, carrier localization on potential fluctuations with a spatial extension smaller than the QD size is observed only for the InGaN QD-sample with the highest In content (peak emission around 2.76 eV). These results confirm the efficiency of the QD three-dimensional confinement in circumventing the potential fluctuations related to structural defects or alloy inhomogeneity. PL excitation measurements demonstrate efficient carrier transfer from the wetting layer to the QDs in the GaN/AlN system, even for low QD densities (~1010 cm-3). In the case of InGaN/GaN QDs, transport losses in the GaN barriers cannot be discarded, but an upper limit to these losses of 15% is deduced from PL measurements as a function of the excitation wavelength.
Resumo:
We report on properties of high quality ~60 nm thick InAlN layers nearly in-plane lattice-matched to GaN, grown on c-plane GaN-on-sapphire templates by plasma-assisted molecular beam epitaxy. Excellent crystalline quality and low surface roughness are confirmed by X-ray diffraction, transmission electron microscopy, and atomic force microscopy. High annular dark field observations reveal a periodic in-plane indium content variation (8 nm period), whereas optical measurements evidence certain residual absorption below the band-gap. The indium fluctuation is estimated to be +/- 1.2% around the nominal 17% indium content via plasmon energy oscillations assessed by electron energy loss spectroscopy with sub-nanometric spatial resolution.
Resumo:
Selective area growth of a-plane GaN nanocolumns by molecular beam epitaxy was performed for the first time on a-plane GaN templates. Ti masks with 150 nm diameter nanoholes were fabricated by colloidal lithography, an easy, fast and cheap process capable to handle large areas. Even though colloidal lithography does not provide a perfect geometrical arrangement like e-beam lithography, it produces a very homogeneous mask in terms of nanohole diameter and density, and is used here for the first time for the selective area growth of GaN. Selective area growth of a-plane GaN nanocolumns is compared, in terms of anisotropic lateral and vertical growth rates, with GaN nanocolumns grown selectively on the c-plane
Resumo:
The high lattice mismatch between III-nitride binaries (InN, GaN and AlN) remains a key problem to grow high quality III-nitride heterostructures. Recent interest has been focused on the growth of high-quality InAlN layers, with approximately 18% of indium incorporation, in-plane lattice-matched (LM) to GaN. While a lot of work has been done by metal-organic vapour phase epitaxy (MOVPE) by Carlin and co-workers, its growth by molecular beam epitaxy (MBE) is still in infancy
Resumo:
Deep level defects in n-type unintentionally doped a-plane MgxZn1−xO, grown by molecular beam epitaxy on r-plane sapphire were fully characterized using deep level optical spectroscopy (DLOS) and related methods. Four compositions of MgxZn1−xO were examined with x = 0.31, 0.44, 0.52, and 0.56 together with a control ZnO sample. DLOS measurements revealed the presence of five deep levels in each Mg-containing sample, having energy levels of Ec − 1.4 eV, 2.1 eV, 2.6 V, and Ev + 0.3 eV and 0.6 eV. For all Mg compositions, the activation energies of the first three states were constant with respect to the conduction band edge, whereas the latter two revealed constant activation energies with respect to the valence band edge. In contrast to the ternary materials, only three levels, at Ec − 2.1 eV, Ev + 0.3 eV, and 0.6 eV, were observed for the ZnO control sample in this systematically grown series of samples. Substantially higher concentrations of the deep levels at Ev + 0.3 eV and Ec − 2.1 eV were observed in ZnO compared to the Mg alloyed samples. Moreover, there is a general invariance of trap concentration of the Ev + 0.3 eV and 0.6 eV levels on Mg content, while at least and order of magnitude dependency of the Ec − 1.4 eV and Ec − 2.6 eV levels in Mg alloyed samples.
Resumo:
We demonstrate site-controlled growth of epitaxial Ag nanocrystals on patterned GaAs substrates by molecular beam epitaxy with high degree of long-range uniformity. The alignment is based on lithographically defined holes in which position controlled InAs quantum dots are grown. The Ag nanocrystals self-align preferentially on top of the InAs quantum dots. No such ordering is observed in the absence of InAs quantum dots, proving that the ordering is strain-driven. The presented technique facilitates the placement of active plasmonic nanostructures at arbitrarily defined positions enabling their integration into complex devices and plasmonic circuits.
Resumo:
The basics of the self-assembled growth of GaN nanorods on Si(111) are reviewed. Morphology differences and optical properties are compared to those of GaN layers grown directly on Si(111). The effects of the growth temperature on the In incorporation in self-assembled InGaN nanorods grown on Si(111) is described. In addition, the inclusion of InGaN quantum disk structures into selfassembled GaN nanorods show clear confinement effects as a function of the quantum disk thickness. In order to overcome the properties dispersion and the intrinsic inhomogeneous nature of the self-assembled growth, the selective area growth of GaN nanorods on both, c-plane and a-plane GaN on sapphire templates, is addressed, with special emphasis on optical quality and morphology differences. The analysis of the optical emission from a single InGaN quantum disk is shown for both polar and non-polar nanorod orientations
Resumo:
he composition, strain and surface morphology of (0001)InGaN layers are investigated as a function of growth temperature (460–645 °C) and impinging In flux. Three different growth regimes: nitrogen-rich, metal-rich and intermediate metal-rich, are clearly identified and found to be in correlation with surface morphology and strain relaxation. Best epilayers’ quality is obtained when growing under intermediate metal-rich conditions, with 1–2 monolayers thick In ad-coverage. For a given In flux, the In incorporation decreases with increasing growth temperature due to InN thermal decomposition that follows an Arrhenius behavior with 1.84±0.12 eV activation energy.
Resumo:
This work reports on the growth of (In, Ga)N core−shell micro pillars by plasma-assisted molecular beam epitaxy using an ordered array of GaN cores grown by metal organic vapor phase epitaxy as a template. Upon (In, Ga)N growth, core−shell structures with emission at around 3.0 eV are formed. Further, the fabrication of a core−shell pin structure is demonstrated.
Resumo:
This work reports on the selective area growth mechanism of green-emitting InGaN/GaN nanocolumns. The evolution of the morphology of the InGaN segment is found to depend critically on the nominal III/V ratio as well as the diameter of the GaN section. In addition, the In distribution inside the InGaN segment is found to depend on the local III/V and In/Ga ratios.
Resumo:
III-nitride nanorods have attracted much scientific interest during the last decade because of their unique optical and electrical properties [1,2]. The high crystal quality and the absence of extended defects make them ideal candidates for the fabrication of high efficiency opto-electronic devices such as nano-photodetectors, light-emitting diodes, and solar cells [1-3]. Nitride nanorods are commonly grown in the self-assembled mode by plasma-assisted molecular beam epitaxy (MBE) [4]. However, self-assembled nanorods are characterized by inhomogeneous heights and diameters, which render the device processing very difficult and negatively affect the electronic transport properties of the final device. For this reason, the selective area growth (SAG) mode has been proposed, where the nanorods preferentially grow with high order on pre-defined sites on a pre-patterned substrate
Resumo:
GaN/InGaN nanorods have attracted much scientific interest during the last decade because of their unique optical and electrical properties [1,2]. The high crystal quality and the absence of extended defects make them ideal candidates for the fabrication of high efficiency opto-electronic devices such as nano-photodetectors, light-emitting diodes, and solar cells [1-3]. Nitrides nanorods are commonly grown in the self-assembled mode by plasma-assisted molecular beam epitaxy (MBE) [4]. However, self-assembled nanorods are characterized by inhomogeneous heights and diameters, which render the device processing very difficult and negatively affect the electronic transport properties of the final device. For this reason, the selective area growth (SAG) mode has been proposed, where the nanorods preferentially grow on pre-defined sites on a pre-patterned substrate [5].