17 resultados para first-principles

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, efficiency improvement of solar cells is one of the most important issues in photovoltaic systems and CdTe is one of the most promising thin film photovoltaic materials we can found. CdTe reported efficiencies in solar energy conversion have been as good as that found in polycrystalline Si thin film cell [1], besides CdTe can be easily produced at industrial scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The optoelectronic properties of Cu2ZnSnS4 and environmental considerations have attracted significant interest for photovoltaics. Using first-principles, we analyze the possible improvement of this material as a photovoltaic absorber via the isoelectronic substitution of S with O atoms. The evolution of the acceptor level is analyzed with respect to the atomic position of the nearest neighbors of the O atom. We estimate the maximum efficiency of this compound when used as a light absorber. The presence of the sub-band gap level below the conduction band could increases the solar-energy conversion with respect to the host.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electronic structure of modified chalcopyrite CuInS2 has been analyzed from first principles within the density functional theory. The host chalcopyrite has been modified by introducing atomic impurities M at substitutional sites in the lattice host with M = C, Si, Ge, Sn, Ti, V, Cr, Fe, Co, Ni, Rh, and Ir. Both substitutions M for In and M for Cu have been analyzed. The gap and ionization energies are obtained as a function of the M-S displacements. It is interesting for both spintronic and optoelectronic applications because it can provide significant information with respect to the pressure effect and the nonradiative recombination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Cu2ZnSnS4 (CZTS) semiconductor is a potential photovoltaic material due to its optoelectronic properties. These optoelectronic properties can be potentially improved by the insertion of intermediate states into the energy bandgap. We explore this possibility using Cr as an impurity. We carried out first-principles calculations within the density functional theory analyzing three substitutions: Cu, Sn, or Zn by Cr. In all cases, the Cr introduces a deeper band into the host energy bandgap. Depending on the substitution, this band is full, empty, or partially full. The absorption coefficients in the independent-particle approximation have also been obtained. Comparison between the pure and doped host's absorption coefficients shows that this deeper band opens more photon absorption channels and could therefo:e increase the solar-light absorption with respect to the host.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ternary Cu-Sb-S semiconductors are considered to be sustainable and potential alternative absorber materials in thin film photovoltaic applications. In these compounds, several phases may coexist, albeit in different proportions depending on experimental growth conditions. Additionally, the photovoltaic efficiency could be increased with isoelectronic doping. In this work we analyze the electronic properties of O-doped Cu3SbS3 in two structures: the wittichenite and the skinnerite. We use first-principles within the density functional formalism with two different exchange-correlation potentials. In addition, we estimate the potential of these compounds for photovoltaic applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electronic properties and the low environmental impact of Cu 3 BiS 3 make this compound a promising material for low-cost thin film solar cell technology. From the first principles, the electronic properties of the isoelectronic substitution of S by O in Cu 3 BiS 3 have been obtained using two different exchange-correlation potentials. This compound has an acceptor level below the conduction band, which modifies the opto-electronic properties with respect to the host semiconductor. In order to analyze a possible efficiency increment with respect to the host semiconductor, we have calculated the maximum efficiency of this photovoltaic absorber material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los materiales de banda intermedia han atraido la atención de la comunidad científica en el campo de la energía solar fotovoltaica en los últimos años. Sin embargo, con el objetivo de entender los fundamentos de las células solares de banda intermedia, se debe llevar a cabo un estudio profundo de la características de los materiales. Esto se puede hacer mediante un modelo teórico usando Primeros Principios. A partir de este enfoque se pueden obtener resultados tales como la estructura electrónica y propiedades ópticas, entre otras, de los semiconductores fuertemente dopados y sus precursores. Con el fin de desentrañar las estructuras de estos sistemas electrónicos, esta tesis presenta un estudio termodinámico y optoelectrónico de varios materiales fotovoltaicos. Específicamente se caracterizaron los materiales avanzados de banda intermedia y sus precursores. El estudio se hizo en términos de caracterización teórica de la estructura electrónica, la energética del sistema, entre otros. Además la estabilidad se obtuvo usando configuraciones adaptadas a la simetría del sistema y basado en la combinatoria. Las configuraciones de los sitios ocupados por defectos permiten obtener información sobre un espacio de configuraciones donde las posiciones de los dopantes sustituidos se basan en la simetría del sólido cristalino. El resultado puede ser tratado usando elementos de termodinámica estadística y da información de la estabilidad de todo el espacio simétrico. Además se estudiaron otras características importantes de los semiconductores de base. En concreto, el análisis de las interacciones de van der Waals fueron incluidas en el semiconductor en capas SnS2, y el grado de inversión en el caso de las espinelas [M]In2S4. En este trabajo además realizamos una descripción teórica exhaustiva del sistema CdTe:Bi. Este material de banda-intermedia muestra características que son distintas a las de los otros materiales estudiados. También se analizó el Zn como agente modulador de la posición de las sub-bandas prohibidas en el material de banda-intermedia CuGaS2:Ti. Analizándose además la viabilidad termodinámica de la formación de este compuesto. Finalmente, también se describió el GaN:Cr como material de banda intermedia, en la estructura zinc-blenda y en wurtztite, usando configuraciones de sitios ocupados de acuerdo a la simetría del sistema cristalino del semiconductor de base. Todos los resultados, siempre que fue posible, fueron comparados con los resultados experimentales. ABSTRACT The intermediate-band materials have attracted the attention of the scientific community in the field of the photovoltaics in recent years. Nevertheless, in order to understand the intermediate-band solar cell fundamentals, a profound study of the characteristics of the materials is required. This can be done using theoretical modelling from first-principles. The electronic structure and optical properties of heavily doped semiconductors and their precursor semiconductors are, among others, results that can be obtained from this approach. In order to unravel the structures of these crystalline systems, this thesis presents a thermodynamic and optoelectronic study of several photovoltaic materials. Specifically advanced intermediate-band materials and their precursor semiconductors were characterized. The study was made in terms of theoretical characterization of the electronic structure, energetics among others. The stability was obtained using site-occupancy-disorder configurations adapted to the symmetry of the system and based on combinatorics. The site-occupancy-disorder method allows the formation of a configurational space of substitutional dopant positions based on the symmetry of the crystalline solid. The result, that can be treated using statistical thermodynamics, gives information of the stability of the whole space of symmetry of the crystalline lattice. Furthermore, certain other important characteristics of host semiconductors were studied. Specifically, the van der Waal interactions were included in the SnS2 layered semiconductor, and the inversion degree in cases of [M]In2S4 spinels. In this work we also carried out an exhaustive theoretical description of the CdTe:Bi system. This intermediate-band material shows characteristics that are distinct from those of the other studied intermediate-band materials. In addition, Zn was analysed as a modulator of the positions of the sub-band gaps in the CuGaS2:Ti intermediate-band material. The thermodynamic feasibility of the formation of this compound was also carried out. Finally GaN:Cr intermediate-band material was also described both in the zinc-blende and the wurtztite type structures, using the symmetry-adapted-space of configurations. All results, whenever possible, were compared with experimental results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Defect interaction can take place in CdTe under Te and Bi rich conditions. We demonstrate in this work through first principles calculations, that this phenomenon allows a Jahn Teller distortion to form an isolated half-filled intermediate band in the host semiconductor band-gap. This delocalized energy band supports the experimental deep level reported in the host band-gap of CdTe at a low bismuth concentration. Furthermore, the calculated optical absorption of CdTe:Bi in this work shows a significant subband-gap absorption that also supports the enhancement of the optical absorption found in the previous experimental results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quaternary-ordered double perovskite A2MM’O6 (M=Mo,W) semiconductors are a group of materials with a variety of photocatalytic and optoelectronic applications. An analysis focused on the optoelectronic properties is carried out using first-principles density-functional theory with several U orbital-dependent one-electron potentials applied to different orbital subspaces. The structural non-equivalence of the atoms resulting from the symmetry has been taken in account. In order to analyze optical absorption in these materials deeply, the absorption coefficients have been split into inter- and intra-non-equivalent species contributions. The results indicate that the effect of the A and M’ atoms on the optical properties are minimal whereas the largest contribution comes from the non-equivalent O atoms to M transitions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ternary Cu(Sb,Bi)S2 semiconductors are a group of materials with a wide variety of applications, especially photovoltaic. An analysis of the structural, electronic, and optical properties obtained from first-principles is presented. The microscopic justification of the high absorption coefficients is carried out by splitting the optical properties on chemical species contributions according to the symmetry. Focusing on photovoltaic applications, and from first-principles results, the efficiencies for several solar spectra are obtained as a function of the device thickness. This study indicates the great potential of these materials for photovoltaic and other optical devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ternary molybdates and tungstates ABO4 (A=Ca, Pb and B= Mo, W) are a group of materials that could be used for a variety of optoelectronic applications. We present a study of the optoelectronic properties based on first-principles using several orbitaldependent one-electron potentials applied to several orbital subspaces. The optical properties are split into chemical-species contributions in order to quantify the microscopic contributions. Furthermore, the effect of using several one-electron potentials and orbital subspaces is analyzed. From the results, the larger contribution to the optical absorption comes from the B-O transitions. The possible use as multi-gap solar cell absorbents is analyzed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The CdIn2S4 spinel semiconductor is a potential photovoltaic material due to its energy band gap and absorption properties. These optoelectronic properties can be potentiality improved by the insertion of intermediate states into the energy bandgap. We explore this possibility using M = Cr, V and Mn as an impurity. We analyze with first-principles almost all substitutions of the host atoms by M at the octahedral and tetrahedral sites in the normal and inverse spinel structures. In almost all cases, the impurities introduce deeper bands into the host energy bandgap. Depending on the site substitution, these bands are full, empty or partially-full. It increases the number of possible inter-band transitions and the possible applications in optoelectronic devices. The contribution of the impurity states to these bands and the substitutional energies indicate that these impurities are energetically favorable for some sites in the host spinel. The absorption coefficients in the independent-particle approximation show that these deeper bands open additional photon absorption channels. It could therefore increase the solar-light absorption with respect to the host.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The substitution of Cu, Sn or Zn in the quaternary Cu2ZnSnS4 semiconductor by impurities that introduce intermediate states in the energy bandgap could have important implications either for photovoltaic or spintronic applications. This allows more generation–recombination channels than for the host semiconductor. We explore and discuss this possibility by obtaining the ionization energies from total energy first-principles calculations. The three substitutions of Cu, Sn and Zn by impurities are analyzed. From these results we have found that several impurities have an amphoteric behavior with the donor and acceptor energies in the energy bandgap. In order to analyze the role of the ionization energies in both the radiative and non-radiative processes, the host energy bandgap and the acceptor and the donor energies have been obtained as a function of the inward and outward impurity-S displacements. We carried out the analysis for both the natural and synthetic CZTS. The results show that the ionization energies are similar, whereas the energy band gaps are different.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The substitution of cation atoms by V, Cr and It in the natural and synthetic quaternary Cu2ZnSnS4 semiconductor is analyzed using first-principles methods. In most of the substitutions, the electronic structure of these modified CZTS is characterized for intermediate bands with different occupation and position within of the energy band gap. A study of the symmetry and composition of these intermediate bands is carried out for all substitutions. These bands permit additional photon absorption and emission channels depending on their occupation. The optical properties are obtained and analyzed. The absorption coefficients are split into contributions from the different absorption channels and from the inter- and intra-atomic components. The sub bandgap transitions are significant in many cases because the anion states contribute to the valence, conduction and intermediates bands. These properties could therefore be used for novel optoelectronic devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ternary MCrO4 (M = Ba, Sr) semiconductors are materials with a variety of photocatalyst and optoelectronic applications. We present detailed microscopic analyses based on first principles of the structure, the electronic properties and the optical absorption in which the difference between symmetrically non-equivalent atoms has been considered. The high absorption coefficients of these materials are split into chemical species contributions in accordance with the symmetry. The high optical absorption in these materials is mainly because of the Cr–O inter-species transitions.