14 resultados para Weighted by Sum Assured
em Universidad Politécnica de Madrid
Resumo:
En el presente estudio se propone una metodología para la evaluación de proyectos de implantación de cultivos energéticos, integrando una serie de factores de interés en un modelo de decisión, basado en un enfoque multicriterio. Mediante este modelo se pretende evaluar tanto los territorios más adecuados para la introducción un cultivo energético, como la especie más apropiada a los condicionantes que presenta el lugar elegido. Para este estudio se ha realizado una selección previa de cuatro especies forestales, cuyas características de crecimiento y producción las hace adecuadas para su aplicación en un proyecto de este tipo. Las cuatro especies escogidas han sido chopo, sauce, eucalipto y paulonia. La metodología propuesta ha consistido primero en un estudio ecológico en el ámbito de la Península Ibérica y Baleares, con el fin de identificar aquellas regiones óptimas para cada una de las cuatro especies estudiadas. En este proceso se han seleccionado una serie de factores climáticos, que vendrán definidos a partir de los condicionantes ecológicos de dichas especies. Posteriormente se ha propuesto un modelo multicriterio, basado en técnicas conocidas y de aplicación sencilla, donde se integran aspectos ambientales, económicos y sociales, que vendrán a completar la información ecológica trabajada previamente. Este modelo incluye la técnica de comparación por pares propuesta por el Dr. Saaty en el año 1980, para la ponderación de los factores o criterios seleccionados. Posteriormente, y tras su valoración, se utiliza la suma lineal ponderada como técnica de decisión final. Una vez definido el modelo, se ha aplicado a una comarca en particular, la comarca agraria de Navalmoral de la Mata. A partir de la información recopilada referente a todos los criterios seleccionados previamente en el modelo, se ha procedido a valorar cada uno de ellos. Con estos valores y tras la ponderación de criterios, se ha aplicado el modelo, para obtener finalmente los territorios dentro de la comarca, y las especies forestales con mayor aptitud para el desarrollo de un proyecto de implantación de cultivos energéticos. ABSTRACT A methodology has been proposed for the evaluation of projects to implement energy crops; this includes a number of factors of interest in a decision model based on a multi-criteria approach. This model is to evaluate both the most suitable territories for introducing an energy crop, as the most appropriate species to the conditions presented by the place chosen For this study has made a preliminary selection of four species, with characteristics of growth and production, what making them suitable for use in a project of this type. The four species selected were poplar, willow, eucalyptus and paulownia. The proposed methodology consists first in an ecological study in the context of the Iberian Peninsula and the Balearic Islands, in order to identify those best regions for each of the four species studied. In this process has selected a series of climatic factors, which will be defined from the ecological conditions of these species. Then we have proposed a multi-criteria model based on known techniques and simple application where are integrated environmental, economic and social aspects, which will complement the ecological information previous. This model includes the technique proposed by Dr. Saaty in 1980, the weighting by pairs of factors or criteria selected. Then, after valuation, the weighted linear sum as final decision technique is used. After defining the model has been applied to a particular region, the agrarian region of Navalmoral de la Mata. From the information collected concerning to the criteria previously selected in the model, we proceeded to value each. With these values and assigned weights, the model has been applied to finally get the territories and forest species with greater aptitude for the development of a project to implement energy crops.
Resumo:
Perceptual voice evaluation according to the GRBAS scale is modelled using a linear combination of acoustic parameters calculated after a filter-bank analysis of the recorded voice signals. Modelling results indicate that for breathiness and asthenia more than 55% of the variance of perceptual rates can be explained by such a model, with only 4 latent variables. Moreover, the greatest part of the explained variance can be attributed to only one or two latent variables similarly weighted by all 5 listeners involved in the experiment. Correlation factors between actual rates and model predictions around 0.6 are obtained.
Resumo:
La investigación de esta tesis se centra en el estudio de técnicas geoestadísticas y su contribución a una mayor caracterización del binomio factores climáticos-rendimiento de un cultivo agrícola. El inexorable vínculo entre la variabilidad climática y la producción agrícola cobra especial relevancia en estudios sobre el cambio climático o en la modelización de cultivos para dar respuesta a escenarios futuros de producción mundial. Es información especialmente valiosa en sistemas operacionales de monitoreo y predicción de rendimientos de cultivos Los cuales son actualmente uno de los pilares operacionales en los que se sustenta la agricultura y seguridad alimentaria mundial; ya que su objetivo final es el de proporcionar información imparcial y fiable para la regularización de mercados. Es en este contexto, donde se quiso dar un enfoque alternativo a estudios, que con distintos planteamientos, analizan la relación inter-anual clima vs producción. Así, se sustituyó la dimensión tiempo por la espacio, re-orientando el análisis estadístico de correlación interanual entre rendimiento y factores climáticos, por el estudio de la correlación inter-regional entre ambas variables. Se utilizó para ello una técnica estadística relativamente nueva y no muy aplicada en investigaciones similares, llamada regresión ponderada geográficamente (GWR, siglas en inglés de “Geographically weighted regression”). Se obtuvieron superficies continuas de las variables climáticas acumuladas en determinados periodos fenológicos, que fueron seleccionados por ser factores clave en el desarrollo vegetativo de un cultivo. Por ello, la primera parte de la tesis, consistió en un análisis exploratorio sobre comparación de Métodos de Interpolación Espacial (MIE). Partiendo de la hipótesis de que existe la variabilidad espacial de la relación entre factores climáticos y rendimiento, el objetivo principal de esta tesis, fue el de establecer en qué medida los MIE y otros métodos geoestadísticos de regresión local, pueden ayudar por un lado, a alcanzar un mayor entendimiento del binomio clima-rendimiento del trigo blando (Triticum aestivum L.) al incorporar en dicha relación el componente espacial; y por otro, a caracterizar la variación de los principales factores climáticos limitantes en el crecimiento del trigo blando, acumulados éstos en cuatro periodos fenológicos. Para lleva a cabo esto, una gran carga operacional en la investigación de la tesis consistió en homogeneizar y hacer los datos fenológicos, climáticos y estadísticas agrícolas comparables tanto a escala espacial como a escala temporal. Para España y los Bálticos se recolectaron y calcularon datos diarios de precipitación, temperatura máxima y mínima, evapotranspiración y radiación solar en las estaciones meteorológicas disponibles. Se dispuso de una serie temporal que coincidía con los mismos años recolectados en las estadísticas agrícolas, es decir, 14 años contados desde 2000 a 2013 (hasta 2011 en los Bálticos). Se superpuso la malla de información fenológica de cuadrícula 25 km con la ubicación de las estaciones meteorológicas con el fin de conocer los valores fenológicos en cada una de las estaciones disponibles. Hecho esto, para cada año de la serie temporal disponible se calcularon los valores climáticos diarios acumulados en cada uno de los cuatro periodos fenológicos seleccionados P1 (ciclo completo), P2 (emergencia-madurez), P3 (floración) y P4 (floraciónmadurez). Se calculó la superficie interpolada por el conjunto de métodos seleccionados en la comparación: técnicas deterministas convencionales, kriging ordinario y cokriging ordinario ponderado por la altitud. Seleccionados los métodos más eficaces, se calculó a nivel de provincias las variables climatológicas interpoladas. Y se realizaron las regresiones locales GWR para cuantificar, explorar y modelar las relaciones espaciales entre el rendimiento del trigo y las variables climáticas acumuladas en los cuatro periodos fenológicos. Al comparar la eficiencia de los MIE no destaca una técnica por encima del resto como la que proporcione el menor error en su predicción. Ahora bien, considerando los tres indicadores de calidad de los MIE estudiados se han identificado los métodos más efectivos. En el caso de la precipitación, es la técnica geoestadística cokriging la más idónea en la mayoría de los casos. De manera unánime, la interpolación determinista en función radial (spline regularizado) fue la técnica que mejor describía la superficie de precipitación acumulada en los cuatro periodos fenológicos. Los resultados son más heterogéneos para la evapotranspiración y radiación. Los métodos idóneos para estas se reparten entre el Inverse Distance Weighting (IDW), IDW ponderado por la altitud y el Ordinary Kriging (OK). También, se identificó que para la mayoría de los casos en que el error del Ordinary CoKriging (COK) era mayor que el del OK su eficacia es comparable a la del OK en términos de error y el requerimiento computacional de este último es mucho menor. Se pudo confirmar que existe la variabilidad espacial inter-regional entre factores climáticos y el rendimiento del trigo blando tanto en España como en los Bálticos. La herramienta estadística GWR fue capaz de reproducir esta variabilidad con un rendimiento lo suficientemente significativo como para considerarla una herramienta válida en futuros estudios. No obstante, se identificaron ciertas limitaciones en la misma respecto a la información que devuelve el programa a nivel local y que no permite desgranar todo el detalle sobre la ejecución del mismo. Los indicadores y periodos fenológicos que mejor pudieron reproducir la variabilidad espacial del rendimiento en España y Bálticos, arrojaron aún, una mayor credibilidad a los resultados obtenidos y a la eficacia del GWR, ya que estaban en línea con el conocimiento agronómico sobre el cultivo del trigo blando en sistemas agrícolas mediterráneos y norteuropeos. Así, en España, el indicador más robusto fue el balance climático hídrico Climatic Water Balance) acumulado éste, durante el periodo de crecimiento (entre la emergencia y madurez). Aunque se identificó la etapa clave de la floración como el periodo en el que las variables climáticas acumuladas proporcionaban un mayor poder explicativo del modelo GWR. Sin embargo, en los Bálticos, países donde el principal factor limitante en su agricultura es el bajo número de días de crecimiento efectivo, el indicador más efectivo fue la radiación acumulada a lo largo de todo el ciclo de crecimiento (entre la emergencia y madurez). Para el trigo en regadío no existe ninguna combinación que pueda explicar más allá del 30% de la variación del rendimiento en España. Poder demostrar que existe un comportamiento heterogéneo en la relación inter-regional entre el rendimiento y principales variables climáticas, podría contribuir a uno de los mayores desafíos a los que se enfrentan, a día de hoy, los sistemas operacionales de monitoreo y predicción de rendimientos de cultivos, y éste es el de poder reducir la escala espacial de predicción, de un nivel nacional a otro regional. ABSTRACT This thesis explores geostatistical techniques and their contribution to a better characterization of the relationship between climate factors and agricultural crop yields. The crucial link between climate variability and crop production plays a key role in climate change research as well as in crops modelling towards the future global production scenarios. This information is particularly important for monitoring and forecasting operational crop systems. These geostatistical techniques are currently one of the most fundamental operational systems on which global agriculture and food security rely on; with the final aim of providing neutral and reliable information for food market controls, thus avoiding financial speculation of nourishments of primary necessity. Within this context the present thesis aims to provide an alternative approach to the existing body of research examining the relationship between inter-annual climate and production. Therefore, the temporal dimension was replaced for the spatial dimension, re-orienting the statistical analysis of the inter-annual relationship between crops yields and climate factors to an inter-regional correlation between these two variables. Geographically weighted regression, which is a relatively new statistical technique and which has rarely been used in previous research on this topic was used in the current study. Continuous surface values of the climate accumulated variables in specific phenological periods were obtained. These specific periods were selected because they are key factors in the development of vegetative crop. Therefore, the first part of this thesis presents an exploratory analysis regarding the comparability of spatial interpolation methods (SIM) among diverse SIMs and alternative geostatistical methodologies. Given the premise that spatial variability of the relationship between climate factors and crop production exists, the primary aim of this thesis was to examine the extent to which the SIM and other geostatistical methods of local regression (which are integrated tools of the GIS software) are useful in relating crop production and climate variables. The usefulness of these methods was examined in two ways; on one hand the way this information could help to achieve higher production of the white wheat binomial (Triticum aestivum L.) by incorporating the spatial component in the examination of the above-mentioned relationship. On the other hand, the way it helps with the characterization of the key limiting climate factors of soft wheat growth which were analysed in four phenological periods. To achieve this aim, an important operational workload of this thesis consisted in the homogenization and obtention of comparable phenological and climate data, as well as agricultural statistics, which made heavy operational demands. For Spain and the Baltic countries, data on precipitation, maximum and minimum temperature, evapotranspiration and solar radiation from the available meteorological stations were gathered and calculated. A temporal serial approach was taken. These temporal series aligned with the years that agriculture statistics had previously gathered, these being 14 years from 2000 to 2013 (until 2011 for the Baltic countries). This temporal series was mapped with a phenological 25 km grid that had the location of the meteorological stations with the objective of obtaining the phenological values in each of the available stations. Following this procedure, the daily accumulated climate values for each of the four selected phenological periods were calculated; namely P1 (complete cycle), P2 (emergency-maturity), P3 (flowering) and P4 (flowering- maturity). The interpolated surface was then calculated using the set of selected methodologies for the comparison: deterministic conventional techniques, ordinary kriging and ordinary cokriging weighted by height. Once the most effective methods had been selected, the level of the interpolated climate variables was calculated. Local GWR regressions were calculated to quantify, examine and model the spatial relationships between soft wheat production and the accumulated variables in each of the four selected phenological periods. Results from the comparison among the SIMs revealed that no particular technique seems more favourable in terms of accuracy of prediction. However, when the three quality indicators of the compared SIMs are considered, some methodologies appeared to be more efficient than others. Regarding precipitation results, cokriging was the most accurate geostatistical technique for the majority of the cases. Deterministic interpolation in its radial function (controlled spline) was the most accurate technique for describing the accumulated precipitation surface in all phenological periods. However, results are more heterogeneous for the evapotranspiration and radiation methodologies. The most appropriate technique for these forecasts are the Inverse Distance Weighting (IDW), weighted IDW by height and the Ordinary Kriging (OK). Furthermore, it was found that for the majority of the cases where the Ordinary CoKriging (COK) error was larger than that of the OK, its efficacy was comparable to that of the OK in terms of error while the computational demands of the latter was much lower. The existing spatial inter-regional variability between climate factors and soft wheat production was confirmed for both Spain and the Baltic countries. The GWR statistic tool reproduced this variability with an outcome significative enough as to be considered a valid tool for future studies. Nevertheless, this tool also had some limitations with regards to the information delivered by the programme because it did not allow for a detailed break-down of its procedure. The indicators and phenological periods that best reproduced the spatial variability of yields in Spain and the Baltic countries made the results and the efficiency of the GWR statistical tool even more reliable, despite the fact that these were already aligned with the agricultural knowledge about soft wheat crop under mediterranean and northeuropean agricultural systems. Thus, for Spain, the most robust indicator was the Climatic Water Balance outcome accumulated throughout the growing period (between emergency and maturity). Although the flowering period was the phase that best explained the accumulated climate variables in the GWR model. For the Baltic countries where the main limiting agricultural factor is the number of days of effective growth, the most effective indicator was the accumulated radiation throughout the entire growing cycle (between emergency and maturity). For the irrigated soft wheat there was no combination capable of explaining above the 30% of variation of the production in Spain. The fact that the pattern of the inter-regional relationship between the crop production and key climate variables is heterogeneous within a country could contribute to one is one of the greatest challenges that the monitoring and forecasting operational systems for crop production face nowadays. The present findings suggest that the solution may lay in downscaling the spatial target scale from a national to a regional level.
Resumo:
This work studies the use of ultrasonic imaging as an evaluation tool in concrete subjected to freeze–thaw (F–T) cycles. To evaluate the damage in this deterioration process, ultrasonic velocity and attenuation images have been generated from concrete specimens with and without air-entraining agents. Two parameters have been proposed from these ultrasonic images according to our experimental setup: the non-assessable area proportion (NAAP) and a weighted average velocity in terms of the NAAP. The proposed parameters have been compared with the recommended failure criteria of the ASTM and Rilem standards, which employ ultrasonic contact measurements. The principal advantage of the use of ultrasonic images and the proposed methodology in comparison with the ultrasonic velocity measurements by contact is the possibility of detection of incipient damage caused by accelerated freeze–thaw cycles.
Resumo:
Pot experiments were performed to evaluate the phytoremediation capacity of plants of Atriplex halimus grown in contaminated mine soils and to investigate the effects of organic amendments on the metal bioavailability and uptake of these metals by plants. Soil samples collected from abandoned mine sites north of Madrid (Spain) were mixed with 0, 30 and 60 Mg ha?1 of two organic amendments, with different pH and nutrients content: pine-bark compost and horse- and sheep-manure compost. The increasing soil organic matter content and pH by the application of manure amendment reduced metal bioavailability in soil stabilising them. The proportion of Cu in the most bioavailable fractions (sum of the water-soluble, exchangeable, acid-soluble and Fe?Mn oxides fractions) decreased with the addition of 60 Mg ha?1 of manure from 62% to 52% in one of the soils studied and from 50% to 30% in the other. This amendment also reduced Zn proportion in water-soluble and exchangeable fractions from 17% to 13% in one of the soils. Manure decreased metal concentrations in shoots of A. halimus, from 97 to 35 mg kg?1 of Cu, from 211 to 98 mg kg?1 of Zn and from 1.4 to 0.6 mg kg?1 of Cd. In these treatments there was a higher plant growth due to the lower metal toxicity and the improvement of nutrients content in soil. This higher growth resulted in a higher total metal accumulation in plant biomass and therefore in a greater amount of metals removed from soil, so manure could be useful for phytoextraction purposes. This amendment increased metal accumulation in shoots from 37 to 138 mg pot?1 of Cu, from 299 to 445 mg pot?1 of Zn and from 1.8 to 3.7 mg pot?1 of Cd. Pine bark amendment did not significantly alter metal availability and its uptake by plants. Plants of A. halimus managed to reduce total Zn concentration in one of the soils from 146 to 130 mg kg?1, but its phytoextraction capacity was insufficient to remediate contaminated soils in the short-to-medium term. However, A. halimus could be, in combination with manure amendment, appropriate for the phytostabilization of metals in mine soils.
Resumo:
In general, insurance is a form of risk management used to hedge against a contingent loss. The conventional definition is the equitable transfer of a risk of loss from one entity to another in exchange for a premium or a guaranteed and quantifiable small loss to prevent a large and possibly devastating loss being agricultural insurance a special line of property insurance. Agriculture insurance, as actually are designed in the Spanish scenario, were established in 1978. At the macroeconomic insurance studies scale, it is necessary to know a basic element for the insurance actuarial components: sum insured. When a new risk assessment has to be evaluated in the insurance framework, it is essential to determinate venture capital in the total Spanish agriculture. In this study, three different crops (cereal, citrus and vineyards) cases are showed to determinate sum insured as they are representative of the cases found in the Spanish agriculture. Crop sum insured is calculated by the product of crop surface, unit surface production and crop price insured. In the cereal case, winter as spring cereal sowing, represents the highest Spanish crop surface, above to 6 millions of hectares (ha). Meanwhile, the four citrus species (oranges, mandarins, lemons and grapefruits) occupied an extension just over 275.000 ha. On the other hand, vineyard target to wine process shows almost one million of ha in Spain.
Resumo:
Many studies investigating the aging brain or disease-induced brain alterations rely on accurate and reproducible brain tissue segmentation. Being a preliminary processing step prior to the segmentation, reliableskull-stripping the removal ofnon-brain tissue is also crucial for all later image assessment. Typically, segmentation algorithms rely on an atlas i.e. pre-segmented template data. Brain morphology, however, differs considerably depending on age, sex and race. In addition, diseased brains may deviate significantly from the atlas information typically gained from healthy volunteers. The imposed prior atlas information can thus lead to degradation of segmentation results. The recently introduced MP2RAGE sequence provides a bias-free T1 contrast with heavily reduced T2*- and PD-weighting compared to the standard MP-RAGE [1]. To this end, it acquires two image volumes at different inversion times in one acquisition, combining them to a uniform, i.e. homogenous image. In this work, we exploit the advantageous contrast properties of the MP2RAGE and combine it with a Dixon (i.e. fat-water separation) approach. The information gained by the additional fat image of the head considerably improves the skull-stripping outcome [2]. In conjunction with the pure T1 contrast of the MP2RAGE uniform image, we achieve robust skull-stripping and brain tissue segmentation without the use of an atlas
Resumo:
Territory or zone design processes entail partitioning a geographic space, organized as a set of areal units, into different regions or zones according to a specific set of criteria that are dependent on the application context. In most cases, the aim is to create zones of approximately equal sizes (zones with equal numbers of inhabitants, same average sales, etc.). However, some of the new applications that have emerged, particularly in the context of sustainable development policies, are aimed at defining zones of a predetermined, though not necessarily similar, size. In addition, the zones should be built around a given set of seeds. This type of partitioning has not been sufficiently researched; therefore, there are no known approaches for automated zone delimitation. This study proposes a new method based on a discrete version of the adaptive additively weighted Voronoi diagram that makes it possible to partition a two-dimensional space into zones of specific sizes, taking both the position and the weight of each seed into account. The method consists of repeatedly solving a traditional additively weighted Voronoi diagram, so that each seed?s weight is updated at every iteration. The zones are geographically connected using a metric based on the shortest path. Tests conducted on the extensive farming system of three municipalities in Castile-La Mancha (Spain) have established that the proposed heuristic procedure is valid for solving this type of partitioning problem. Nevertheless, these tests confirmed that the given seed position determines the spatial configuration the method must solve and this may have a great impact on the resulting partition.
Resumo:
Introduction Diffusion weighted Imaging (DWI) techniques are able to measure, in vivo and non-invasively, the diffusivity of water molecules inside the human brain. DWI has been applied on cerebral ischemia, brain maturation, epilepsy, multiple sclerosis, etc. [1]. Nowadays, there is a very high availability of these images. DWI allows the identification of brain tissues, so its accurate segmentation is a common initial step for the referred applications. Materials and Methods We present a validation study on automated segmentation of DWI based on the Gaussian mixture and hidden Markov random field models. This methodology is widely solved with iterative conditional modes algorithm, but some studies suggest [2] that graph-cuts (GC) algorithms improve the results when initialization is not close to the final solution. We implemented a segmentation tool integrating ITK with a GC algorithm [3], and a validation software using fuzzy overlap measures [4]. Results Segmentation accuracy of each tool is tested against a gold-standard segmentation obtained from a T1 MPRAGE magnetic resonance image of the same subject, registered to the DWI space. The proposed software shows meaningful improvements by using the GC energy minimization approach on DTI and DSI (Diffusion Spectrum Imaging) data. Conclusions The brain tissues segmentation on DWI is a fundamental step on many applications. Accuracy and robustness improvements are achieved with the proposed software, with high impact on the application’s final result.
Resumo:
In this work, an improvement of the results presented by [1] Abellanas et al. (Weak Equilibrium in a Spatial Model. International Journal of Game Theory, 40(3), 449-459) is discussed. Concretely, this paper investigates an abstract game of competition between two players that want to earn the maximum number of points from a finite set of points in the plane. It is assumed that the distribution of these points is not uniform, so an appropriate weight to each position is assigned. A definition of equilibrium which is weaker than the classical one is included in order to avoid the uniqueness of the equilibrium position typical of the Nash equilibrium in these kinds of games. The existence of this approximated equilibrium in the game is analyzed by means of computational geometry techniques.
Resumo:
Whole brain resting state connectivity is a promising biomarker that might help to obtain an early diagnosis in many neurological diseases, such as dementia. Inferring resting-state connectivity is often based on correlations, which are sensitive to indirect connections, leading to an inaccurate representation of the real backbone of the network. The precision matrix is a better representation for whole brain connectivity, as it considers only direct connections. The network structure can be estimated using the graphical lasso (GL), which achieves sparsity through l1-regularization on the precision matrix. In this paper, we propose a structural connectivity adaptive version of the GL, where weaker anatomical connections are represented as stronger penalties on the corre- sponding functional connections. We applied beamformer source reconstruction to the resting state MEG record- ings of 81 subjects, where 29 were healthy controls, 22 were single-domain amnestic Mild Cognitive Impaired (MCI), and 30 were multiple-domain amnestic MCI. An atlas-based anatomical parcellation of 66 regions was ob- tained for each subject, and time series were assigned to each of the regions. The fiber densities between the re- gions, obtained with deterministic tractography from diffusion-weighted MRI, were used to define the anatomical connectivity. Precision matrices were obtained with the region specific time series in five different frequency bands. We compared our method with the traditional GL and a functional adaptive version of the GL, in terms of log-likelihood and classification accuracies between the three groups. We conclude that introduc- ing an anatomical prior improves the expressivity of the model and, in most cases, leads to a better classification between groups.
Resumo:
The present study aimed to investigate the relationships between macronutrient intake and serum lipid profile in adolescents from eight European cities participating in the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) cross-sectional study (2006–7), and to assess the role of body fat-related variables in these associations. Weight, height, waist circumference, skinfold thicknesses, total choles- terol, HDL-cholesterol (HDL-C), LDL-cholesterol, TAG, apoB and apoA1 were measured in 454 adolescents (44 % boys) aged 12·5–17·5 years. Macronutrient intake (g/4180 kJ per d (1000 kcal per d)) was assessed using two non-consecutive 24 h dietary recalls. Associations were evaluated by multi-level analysis and adjusted for sex, age, maternal education, centre, sum of four skinfolds, moderate-to-vigorous.
Resumo:
Los sistemas transaccionales tales como los programas informáticos para la planificación de recursos empresariales (ERP software) se han implementado ampliamente mientras que los sistemas analíticos para la gestión de la cadena de suministro (SCM software) no han tenido el éxito deseado por la industria de tecnología de información (TI). Aunque se documentan beneficios importantes derivados de las implantaciones de SCM software, las empresas industriales son reacias a invertir en este tipo de sistemas. Por una parte esto es debido a la falta de métodos que son capaces de detectar los beneficios por emplear esos sistemas, y por otra parte porque el coste asociado no está identificado, detallado y cuantificado suficientemente. Los esquemas de coordinación basados únicamente en sistemas ERP son alternativas válidas en la práctica industrial siempre que la relación coste-beneficio esta favorable. Por lo tanto, la evaluación de formas organizativas teniendo en cuenta explícitamente el coste debido a procesos administrativos, en particular por ciclos iterativos, es de gran interés para la toma de decisiones en el ámbito de inversiones en TI. Con el fin de cerrar la brecha, el propósito de esta investigación es proporcionar métodos de evaluación que permitan la comparación de diferentes formas de organización y niveles de soporte por sistemas informáticos. La tesis proporciona una amplia introducción, analizando los retos a los que se enfrenta la industria. Concluye con las necesidades de la industria de SCM software: unas herramientas que facilitan la evaluación integral de diferentes propuestas de organización. A continuación, la terminología clave se detalla centrándose en la teoría de la organización, las peculiaridades de inversión en TI y la tipología de software de gestión de la cadena de suministro. La revisión de la literatura clasifica las contribuciones recientes sobre la gestión de la cadena de suministro, tratando ambos conceptos, el diseño de la organización y su soporte por las TI. La clasificación incluye criterios relacionados con la metodología de la investigación y su contenido. Los estudios empíricos en el ámbito de la administración de empresas se centran en tipologías de redes industriales. Nuevos algoritmos de planificación y esquemas de coordinación innovadoras se desarrollan principalmente en el campo de la investigación de operaciones con el fin de proponer nuevas funciones de software. Artículos procedentes del área de la gestión de la producción se centran en el análisis de coste y beneficio de las implantaciones de sistemas. La revisión de la literatura revela que el éxito de las TI para la coordinación de redes industriales depende en gran medida de características de tres dimensiones: la configuración de la red industrial, los esquemas de coordinación y las funcionalidades del software. La literatura disponible está enfocada sobre todo en los beneficios de las implantaciones de SCM software. Sin embargo, la coordinación de la cadena de suministro, basándose en el sistema ERP, sigue siendo la práctica industrial generalizada, pero el coste de coordinación asociado no ha sido abordado por los investigadores. Los fundamentos de diseño organizativo eficiente se explican en detalle en la medida necesaria para la comprensión de la síntesis de las diferentes formas de organización. Se han generado varios esquemas de coordinación variando los siguientes parámetros de diseño: la estructura organizativa, los mecanismos de coordinación y el soporte por TI. Las diferentes propuestas de organización desarrolladas son evaluadas por un método heurístico y otro basado en la simulación por eventos discretos. Para ambos métodos, se tienen en cuenta los principios de la teoría de la organización. La falta de rendimiento empresarial se debe a las dependencias entre actividades que no se gestionan adecuadamente. Dentro del método heurístico, se clasifican las dependencias y se mide su intensidad basándose en factores contextuales. A continuación, se valora la idoneidad de cada elemento de diseño organizativo para cada dependencia específica. Por último, cada forma de organización se evalúa basándose en la contribución de los elementos de diseño tanto al beneficio como al coste. El beneficio de coordinación se refiere a la mejora en el rendimiento logístico - este concepto es el objeto central en la mayoría de modelos de evaluación de la gestión de la cadena de suministro. Por el contrario, el coste de coordinación que se debe incurrir para lograr beneficios no se suele considerar en detalle. Procesos iterativos son costosos si se ejecutan manualmente. Este es el caso cuando SCM software no está implementada y el sistema ERP es el único instrumento de coordinación disponible. El modelo heurístico proporciona un procedimiento simplificado para la clasificación sistemática de las dependencias, la cuantificación de los factores de influencia y la identificación de configuraciones que indican el uso de formas organizativas y de soporte de TI más o menos complejas. La simulación de eventos discretos se aplica en el segundo modelo de evaluación utilizando el paquete de software ‘Plant Simulation’. Con respecto al rendimiento logístico, por un lado se mide el coste de fabricación, de inventario y de transporte y las penalizaciones por pérdida de ventas. Por otro lado, se cuantifica explícitamente el coste de la coordinación teniendo en cuenta los ciclos de coordinación iterativos. El método se aplica a una configuración de cadena de suministro ejemplar considerando diversos parámetros. Los resultados de la simulación confirman que, en la mayoría de los casos, el beneficio aumenta cuando se intensifica la coordinación. Sin embargo, en ciertas situaciones en las que se aplican ciclos de planificación manuales e iterativos el coste de coordinación adicional no siempre conduce a mejor rendimiento logístico. Estos resultados inesperados no se pueden atribuir a ningún parámetro particular. La investigación confirma la gran importancia de nuevas dimensiones hasta ahora ignoradas en la evaluación de propuestas organizativas y herramientas de TI. A través del método heurístico se puede comparar de forma rápida, pero sólo aproximada, la eficiencia de diferentes formas de organización. Por el contrario, el método de simulación es más complejo pero da resultados más detallados, teniendo en cuenta parámetros específicos del contexto del caso concreto y del diseño organizativo. ABSTRACT Transactional systems such as Enterprise Resource Planning (ERP) systems have been implemented widely while analytical software like Supply Chain Management (SCM) add-ons are adopted less by manufacturing companies. Although significant benefits are reported stemming from SCM software implementations, companies are reluctant to invest in such systems. On the one hand this is due to the lack of methods that are able to detect benefits from the use of SCM software and on the other hand associated costs are not identified, detailed and quantified sufficiently. Coordination schemes based only on ERP systems are valid alternatives in industrial practice because significant investment in IT can be avoided. Therefore, the evaluation of these coordination procedures, in particular the cost due to iterations, is of high managerial interest and corresponding methods are comprehensive tools for strategic IT decision making. The purpose of this research is to provide evaluation methods that allow the comparison of different organizational forms and software support levels. The research begins with a comprehensive introduction dealing with the business environment that industrial networks are facing and concludes highlighting the challenges for the supply chain software industry. Afterwards, the central terminology is addressed, focusing on organization theory, IT investment peculiarities and supply chain management software typology. The literature review classifies recent supply chain management research referring to organizational design and its software support. The classification encompasses criteria related to research methodology and content. Empirical studies from management science focus on network types and organizational fit. Novel planning algorithms and innovative coordination schemes are developed mostly in the field of operations research in order to propose new software features. Operations and production management researchers realize cost-benefit analysis of IT software implementations. The literature review reveals that the success of software solutions for network coordination depends strongly on the fit of three dimensions: network configuration, coordination scheme and software functionality. Reviewed literature is mostly centered on the benefits of SCM software implementations. However, ERP system based supply chain coordination is still widespread industrial practice but the associated coordination cost has not been addressed by researchers. Fundamentals of efficient organizational design are explained in detail as far as required for the understanding of the synthesis of different organizational forms. Several coordination schemes have been shaped through the variation of the following design parameters: organizational structuring, coordination mechanisms and software support. The different organizational proposals are evaluated using a heuristic approach and a simulation-based method. For both cases, the principles of organization theory are respected. A lack of performance is due to dependencies between activities which are not managed properly. Therefore, within the heuristic method, dependencies are classified and their intensity is measured based on contextual factors. Afterwards the suitability of each organizational design element for the management of a specific dependency is determined. Finally, each organizational form is evaluated based on the contribution of the sum of design elements to coordination benefit and to coordination cost. Coordination benefit refers to improvement in logistic performance – this is the core concept of most supply chain evaluation models. Unfortunately, coordination cost which must be incurred to achieve benefits is usually not considered in detail. Iterative processes are costly when manually executed. This is the case when SCM software is not implemented and the ERP system is the only available coordination instrument. The heuristic model provides a simplified procedure for the classification of dependencies, quantification of influence factors and systematic search for adequate organizational forms and IT support. Discrete event simulation is applied in the second evaluation model using the software package ‘Plant Simulation’. On the one hand logistic performance is measured by manufacturing, inventory and transportation cost and penalties for lost sales. On the other hand coordination cost is explicitly considered taking into account iterative coordination cycles. The method is applied to an exemplary supply chain configuration considering various parameter settings. The simulation results confirm that, in most cases, benefit increases when coordination is intensified. However, in some situations when manual, iterative planning cycles are applied, additional coordination cost does not always lead to improved logistic performance. These unexpected results cannot be attributed to any particular parameter. The research confirms the great importance of up to now disregarded dimensions when evaluating SCM concepts and IT tools. The heuristic method provides a quick, but only approximate comparison of coordination efficiency for different organizational forms. In contrast, the more complex simulation method delivers detailed results taking into consideration specific parameter settings of network context and organizational design.
Procedimiento multicriterio-multiobjetivo de planificación energética a comunidades rurales aisladas
Resumo:
La toma de decisiones en el sector energético se torna compleja frente a las disímiles opciones y objetivos a cumplir. Para minimizar esta complejidad, se han venido desarrollando una gama amplia de métodos de apoyo a la toma de decisiones en proyectos energéticos. En la última década, las energización de comunidades rurales aisladas ha venido siendo prioridad de muchos gobiernos para mitigar las migraciones del campo para la ciudad. Para la toma de decisiones en los proyectos energéticos de comunidades rurales aisladas se necesitan proyectar la influencia que estos tendrás sobre los costes económicos, medioambientales y sociales. Es por esta razón que el presente trabajo tuvo como objetivo diseñar un modelo original denominado Generación Energética Autóctona Y Limpia (GEAYL) aplicado a una comunidad rural aislada de la provincia de Granma en Cuba. Este modelo parte dos modelos que le preceden el PAMER y el SEMA. El modelo GEAYL constituye un procedimiento multicriterio-multiobjetivo de apoyo a la planificación energética para este contexto. Se plantearon cinco funciones objetivos: F1, para la minimización de los costes energéticos; F2 para la minimización de las emisiones de CO2, F3, para la minimización de las emisiones de NOx; F4, para la minimización de las emisiones de SOx (cuyos coeficientes fueron obtenidos a través de la literatura especializada) y F5, para la maximización de la Aceptación Social de la Energía. La función F5 y la manera de obtener sus coeficientes constituye la novedad del presente trabajo. Estos coeficientes se determinaron aplicando el método AHP (Proceso Analítico Jerárquico) con los datos de partidas derivados de una encuesta a los usuarios finales de la energía y a expertos. Para determinar el suministro óptimo de energía se emplearon varios métodos: la suma ponderada, el producto ponderado, las distancias de Manhattan L1, la distancia Euclidea L2 y la distancia L3. Para estas métricas se aplicaron distintos vectores de pesos para determinar las distintas estructuras de preferencias de los decisores. Finalmente, se concluyó que tener en consideración a Aceptación Social de la Energía como una función del modelo influye en el suministro de energía de cada alternativa energética. ABSTRACT Energy planning decision making is a complex task due to the multiple options to follow and objectives to meet. In order to minimize this complexity, a wide variety of methods and supporting tools have been designed. Over the last decade, rural energization has been a priority for many governments, aiming to alleviate rural to urban migration. Rural energy planning decision making must rely on financial, environmental and social costs. The purpose of this work is to define an original energy planning model named Clean and Native Energy Generation (Generación Energética Autóctona Y Limpia, GEAYL), and carry out a case study on Granma Province, Cuba. This model is based on two previous models: PAMER & SEMA. GEAYL is a multiobjective-multicriteria energy planning model, which includes five functions to be optimized: F1, to minimize financial costs; F2, to minimize CO2 emissions; F3, to minimize NOx emissions; F4, to minimize SOx emissions; and F5, to maximize energy Social Acceptability. The coefficients corresponding to the first four functions have been obtained through specialized papers and official data, and the ones belonging to F5 through an Analytic Hierarchy Process (AHP), built as per a statistical enquiry carried out on energy users and experts. F5 and the AHP application are considered to be the novelty of this model. In order to establish the optimal energy supply, several methods have been applied: weighted sum, weighted product, Manhattan distance L1, Euclidean distance L2 and L3. Several weight vectors have been applied to the mentioned distances in order to conclude the decision makers potential preference structure. Among the conclusions of this work, it must be noted that function F5, Social Acceptability, has a clear influence on every energy supply alternative.