3 resultados para Weighted by Sum Assured
em CaltechTHESIS
Resumo:
The spin dependent cross sections, σT1/2 and σT3/2 , and asymmetries, A∥ and A⊥ for 3He have been measured at the Jefferson Lab's Hall A facility. The inclusive scattering process 3He(e,e)X was performed for initial beam energies ranging from 0.86 to 5.1 GeV, at a scattering angle of 15.5°. Data includes measurements from the quasielastic peak, resonance region, and the deep inelastic regime. An approximation for the extended Gerasimov-Drell-Hearn integral is presented at a 4-momentum transfer Q2 of 0.2-1.0 GeV2.
Also presented are results on the performance of the polarized 3He target. Polarization of 3He was achieved by the process of spin-exchange collisions with optically pumped rubidium vapor. The 3He polarization was monitored using the NMR technique of adiabatic fast passage (AFP). The average target polarization was approximately 35% and was determined to have a systematic uncertainty of roughly ±4% relative.
Resumo:
The electron diffraction investigation of the following compounds has been carried out: sulfur, sulfur nitride, realgar, arsenic trisulfide, spiropentane, dimethyltrisulfide, cis and trans lewisite, methylal, and ethylene glycol.
The crystal structures of the following salts have been determined by x-ray diffraction: silver molybdateand hydrazinium dichloride.
Suggested revisions of the covalent radii for B, Si, P, Ge, As, Sn, Sb, and Pb have been made, and values for the covalent radii of Al, Ga, In, Ti, and Bi have been proposed.
The Schomaker-Stevenson revision of the additivity rule for single covalent bond distances has been used in conjunction with the revised radii. Agreement with experiment is in general better with the revised radii than with the former radii and additivity.
The principle of ionic bond character in addition to that present in a normal covalent bond has been applied to the observed structures of numerous molecules. It leads to a method of interpretation which is at least as consistent as the theory of multiple bond formation.
The revision of the additivity rule has been extended to double bonds. An encouraging beginning along these lines has been made, but additional experimental data are needed for clarification.
Resumo:
The quasicontinuum (QC) method was introduced to coarse-grain crystalline atomic ensembles in order to bridge the scales from individual atoms to the micro- and mesoscales. Though many QC formulations have been proposed with varying characteristics and capabilities, a crucial cornerstone of all QC techniques is the concept of summation rules, which attempt to efficiently approximate the total Hamiltonian of a crystalline atomic ensemble by a weighted sum over a small subset of atoms. In this work we propose a novel, fully-nonlocal, energy-based formulation of the QC method with support for legacy and new summation rules through a general energy-sampling scheme. Our formulation does not conceptually differentiate between atomistic and coarse-grained regions and thus allows for seamless bridging without domain-coupling interfaces. Within this structure, we introduce a new class of summation rules which leverage the affine kinematics of this QC formulation to most accurately integrate thermodynamic quantities of interest. By comparing this new class of summation rules to commonly-employed rules through analysis of energy and spurious force errors, we find that the new rules produce no residual or spurious force artifacts in the large-element limit under arbitrary affine deformation, while allowing us to seamlessly bridge to full atomistics. We verify that the new summation rules exhibit significantly smaller force artifacts and energy approximation errors than all comparable previous summation rules through a comprehensive suite of examples with spatially non-uniform QC discretizations in two and three dimensions. Due to the unique structure of these summation rules, we also use the new formulation to study scenarios with large regions of free surface, a class of problems previously out of reach of the QC method. Lastly, we present the key components of a high-performance, distributed-memory realization of the new method, including a novel algorithm for supporting unparalleled levels of deformation. Overall, this new formulation and implementation allows us to efficiently perform simulations containing an unprecedented number of degrees of freedom with low approximation error.