Bioavailability and extraction of heavy metals from contaminated soil by Atriplex halimus


Autoria(s): Pérez Esteban, Javier; Escolástico, Consuelo; Ruíz Fernández, Juan; Masaguer Rodríguez, Alberto; Moliner Aramendia, Ana María
Data(s)

01/04/2013

Resumo

Pot experiments were performed to evaluate the phytoremediation capacity of plants of Atriplex halimus grown in contaminated mine soils and to investigate the effects of organic amendments on the metal bioavailability and uptake of these metals by plants. Soil samples collected from abandoned mine sites north of Madrid (Spain) were mixed with 0, 30 and 60 Mg ha?1 of two organic amendments, with different pH and nutrients content: pine-bark compost and horse- and sheep-manure compost. The increasing soil organic matter content and pH by the application of manure amendment reduced metal bioavailability in soil stabilising them. The proportion of Cu in the most bioavailable fractions (sum of the water-soluble, exchangeable, acid-soluble and Fe?Mn oxides fractions) decreased with the addition of 60 Mg ha?1 of manure from 62% to 52% in one of the soils studied and from 50% to 30% in the other. This amendment also reduced Zn proportion in water-soluble and exchangeable fractions from 17% to 13% in one of the soils. Manure decreased metal concentrations in shoots of A. halimus, from 97 to 35 mg kg?1 of Cu, from 211 to 98 mg kg?1 of Zn and from 1.4 to 0.6 mg kg?1 of Cd. In these treatments there was a higher plant growth due to the lower metal toxicity and the improvement of nutrients content in soil. This higher growth resulted in a higher total metal accumulation in plant biomass and therefore in a greater amount of metals removed from soil, so manure could be useful for phytoextraction purposes. This amendment increased metal accumulation in shoots from 37 to 138 mg pot?1 of Cu, from 299 to 445 mg pot?1 of Zn and from 1.8 to 3.7 mg pot?1 of Cd. Pine bark amendment did not significantly alter metal availability and its uptake by plants. Plants of A. halimus managed to reduce total Zn concentration in one of the soils from 146 to 130 mg kg?1, but its phytoextraction capacity was insufficient to remediate contaminated soils in the short-to-medium term. However, A. halimus could be, in combination with manure amendment, appropriate for the phytostabilization of metals in mine soils.

Formato

application/pdf

Identificador

http://oa.upm.es/16510/

Idioma(s)

eng

Publicador

E.T.S.I. Agrónomos (UPM)

Relação

http://oa.upm.es/16510/1/INVE_MEM_2013_134705.pdf

http://www.sciencedirect.com/science/article/pii/S0098847211003108

info:eu-repo/semantics/altIdentifier/doi/10.1016/j.envexpbot.2011.12.003

Direitos

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

info:eu-repo/semantics/openAccess

Fonte

Environmental and Experimental Botany, ISSN 0098-8472, 2013-04, Vol. 88

Palavras-Chave #Agricultura
Tipo

info:eu-repo/semantics/article

Artículo

PeerReviewed