22 resultados para Serious Game
em Universidad Politécnica de Madrid
Resumo:
Some requirements for engineering programmes, such as an ability to use the techniques, skills and modern engineering tools necessary for engineering practice, as well as an understanding of professional and ethical responsibility or an ability to communicate effectively, need new activities designed for measuring students’ progress. Negotiations take place continuously at any stage of a project and, so, the ability of engineers and managers to effectively carry out a negotiation is crucial for the success or failure of projects and businesses. Since it involves communication between individuals motivated to come together in an agreement for mutual benefit, it can be used to enhance these personal abilities. The main objective of this study was to evaluate the adequacy of mixing playing sessions and theory to maximise the students’ strategic vision in combination with negotiating skills. Results show that the combination of playing with theoretical training teaches students to strategise through analysis and discussion of alternatives. The outcome is then more optimised.
Resumo:
Graphics Processing Units have become a booster for the microelectronics industry. However, due to intellectual property issues, there is a serious lack of information on implementation details of the hardware architecture that is behind GPUs. For instance, the way texture is handled and decompressed in a GPU to reduce bandwidth usage has never been dealt with in depth from a hardware point of view. This work addresses a comparative study on the hardware implementation of different texture decompression algorithms for both conventional (PCs and video game consoles) and mobile platforms. Circuit synthesis is performed targeting both a reconfigurable hardware platform and a 90nm standard cell library. Area-delay trade-offs have been extensively analyzed, which allows us to compare the complexity of decompressors and thus determine suitability of algorithms for systems with limited hardware resources.
Resumo:
Abstract This work is focused on the problem of performing multi‐robot patrolling for infrastructure security applications in order to protect a known environment at critical facilities. Thus, given a set of robots and a set of points of interest, the patrolling task consists of constantly visiting these points at irregular time intervals for security purposes. Current existing solutions for these types of applications are predictable and inflexible. Moreover, most of the previous centralized and deterministic solutions and only few efforts have been made to integrate dynamic methods. Therefore, the development of new dynamic and decentralized collaborative approaches in order to solve the aforementioned problem by implementing learning models from Game Theory. The model selected in this work that includes belief‐based and reinforcement models as special cases is called Experience‐Weighted Attraction. The problem has been defined using concepts of Graph Theory to represent the environment in order to work with such Game Theory techniques. Finally, the proposed methods have been evaluated experimentally by using a patrolling simulator. The results obtained have been compared with previous available
Resumo:
Background: There are 600,000 new malaria cases daily worldwide. The gold standard for estimating the parasite burden and the corresponding severity of the disease consists in manually counting the number of parasites in blood smears through a microscope, a process that can take more than 20 minutes of an expert microscopist’s time. Objective: This research tests the feasibility of a crowdsourced approach to malaria image analysis. In particular, we investigated whether anonymous volunteers with no prior experience would be able to count malaria parasites in digitized images of thick blood smears by playing a Web-based game. Methods: The experimental system consisted of a Web-based game where online volunteers were tasked with detecting parasites in digitized blood sample images coupled with a decision algorithm that combined the analyses from several players to produce an improved collective detection outcome. Data were collected through the MalariaSpot website. Random images of thick blood films containing Plasmodium falciparum at medium to low parasitemias, acquired by conventional optical microscopy, were presented to players. In the game, players had to find and tag as many parasites as possible in 1 minute. In the event that players found all the parasites present in the image, they were presented with a new image. In order to combine the choices of different players into a single crowd decision, we implemented an image processing pipeline and a quorum algorithm that judged a parasite tagged when a group of players agreed on its position. Results: Over 1 month, anonymous players from 95 countries played more than 12,000 games and generated a database of more than 270,000 clicks on the test images. Results revealed that combining 22 games from nonexpert players achieved a parasite counting accuracy higher than 99%. This performance could be obtained also by combining 13 games from players trained for 1 minute. Exhaustive computations measured the parasite counting accuracy for all players as a function of the number of games considered and the experience of the players. In addition, we propose a mathematical equation that accurately models the collective parasite counting performance. Conclusions: This research validates the online gaming approach for crowdsourced counting of malaria parasites in images of thick blood films. The findings support the conclusion that nonexperts are able to rapidly learn how to identify the typical features of malaria parasites in digitized thick blood samples and that combining the analyses of several users provides similar parasite counting accuracy rates as those of expert microscopists. This experiment illustrates the potential of the crowdsourced gaming approach for performing routine malaria parasite quantification, and more generally for solving biomedical image analysis problems, with future potential for telediagnosis related to global health challenges.
Resumo:
A novel algorithm based on bimatrix game theory has been developed to improve the accuracy and reliability of a speaker diarization system. This algorithm fuses the output data of two open-source speaker diarization programs, LIUM and SHoUT, taking advantage of the best properties of each one. The performance of this new system has been tested by means of audio streams from several movies. From preliminary results on fragments of five movies, improvements of 63% in false alarms and missed speech mistakes have been achieved with respect to LIUM and SHoUT systems working alone. Moreover, we also improve in a 20% the number of recognized speakers, getting close to the real number of speakers in the audio stream
Resumo:
Con este proyecto se ha desarrollado una guía introductoria a uno de los aspectos más complejos y especializados de Blender, que es el control de su motor de videojuegos mediante programas escritos en Python. Está orientado a lectores que tienen un conocimiento amplio sobre el manejo de Blender, su interfaz y el funcionamiento de sus diferentes elementos, así como una mínima experiencia en cuanto a programación. Se ha organizado en una parte descriptiva, centrada en el lenguaje Python y en las bases de su uso para programar el motor de videojuegos (Game Engine) de Blender, y otra de práctica guiada, que constituye la mayoría del proyecto, donde se estudian de manera progresiva ejemplos concretos de uso del mismo. En la parte descriptiva se ha tratado tanto el funcionamiento más básico del lenguaje Python, especialmente las características que difieren de otros lenguajes de programación tradicionales, como su relación con Blender en particular, explicando las diferentes partes de la API de Blender para Python, y las posibles estrategias de uso. La parte práctica guiada, dado que esta interacción entre Blender y Python ofrece un rango de posibilidades muy amplio, se ha centrado en tres áreas concretas que han sido investigadas en profundidad: el control del objeto protagonista, de la cámara y la implementación de un mapa de orientación. Todas ellas se han centrado en torno a un ejemplo común, que consiste en un videojuego muy básico, y que, gracias a los ficheros de Blender que acompañan a esta memoria, sirve para apoyar las explicaciones y poder probar su efecto directamente. Por una parte, estos tres aspectos prácticos se han explicado exhaustivamente, y se han llevado hasta un nivel relativamente alto. Asimismo se han intentado minimizar las dependencias, tanto entre ellos como con la escena que se ha usado como ejemplo, de manera que sea sencillo usar los programas generados en otras aplicaciones. Por otra, la mayoría de los problemas que ha sido necesario resolver durante el desarrollo no son específicos de ninguna de las tres áreas, sino que son de carácter general, por lo que sus explicaciones podrán usarse al afrontar otras situaciones. ABSTRACT. This Thesis consists of an introductory guide to one of the most complex and specific parts of Blender, which is the control of its game engine by means of programs coded in Python. The dissertation is orientated towards readers who have a good knowledge of Blender, its interface and how its different systems work, as well as basic programming skills. The document is composed of two main sections, the first one containing a description of Python’s basics and its usage within Blender, and the second consisting of three practical examples of interaction between them, guided and explained step by step. On the first section, the fundamentals of Python have been covered in the first place, focusing on the characteristics that distinguish it from other programming languages. Then, Blender’s API for Python has also been introduced, explaining its different parts and the ways it can be used in. Since the interaction between Blender and Python offers a wide range of possibilities, the practical section has been centered on three particular areas. Each one of the following sections has been deeply covered: how to control the main character object, how to control the camera, and how to implement and control a mini-map. Furthermore, a demonstrative videogame has been generated for the reader to be able to directly test the effect of what is explained in each section. On the one hand, these three practical topics have been thoroughly explained, starting from the basis and gradually taking them to a relatively advanced level. The dependences among them, or between them and the demonstrative videogame, have been minimised so that the scripts or ideas can be easily used within other applications. On the other hand, most of the problems that have been addressed are not exclusively related to these areas, but will most likely appear in different situations, thus enlarging the field in which this Thesis can be used.
Resumo:
Creo que uno de los misterios más extraños que existen en nuestro país es el de las posibles causas por las que una especie de maleficio ha ido marcando el camino de la Microelectrónica. Pocos sectores de la tecnología han recibido un apoyo más constante y desde más entornos que ella y, al mismo tiempo, en pocos también se han obtenido menos frutos
Resumo:
We present initial research regarding a system capable of generating novel card games. We furthermore propose a method for com- putationally analysing existing games of the same genre. Ultimately, we present a formalisation of card game rules, and a context-free grammar G cardgame capable of expressing the rules of a large variety of card games. Example derivations are given for the poker variant Texashold?em , Blackjack and UNO. Stochastic simulations are used both to verify the implementation of these well-known games, and to evaluate the results of new game rules derived from the grammar. In future work, this grammar will be used to evolve completely novel card games using a grammar- guided genetic program.
Resumo:
In the area of the professional competition, the coach is a fundamental part in the management of a team and more concretely in the game planning. During the competition, the management of the times of pause and times out as well as the conduct of the coach during the same ones is an aspect to analyze in the sports performance. It is for this that it becomes necessary to know some of the behaviors that turn out to be more frequent by the coach and that are more related to a positive performance of his players. For it there has been realized a study of 7 cases of expert coaches in those that his verbal behavior has observed during 4 games. It has focused on the content of the information only to verbal level, on his meaning. The information that have been obtained in the study shows a major quantity of information elaborated during the pauses of the games and a major tactical content with regard to the moments of game. On the other hand, a relation exists between a major number of questions and a minor number of psychological instructions when the score is adverse, whereas in case of victory, a direct relation does not exist with any category. The rest of categories of the speech do not meet influenced directly for the result, for what it is not possible to consider a direct and immediate relation between the coach verbal behavior during the pauses and the result of the game, except in punctual moments.
Resumo:
The aim of the present study was to identify the importance of floorball tactical variables to predict ball possession effectiveness, when controlling quality of opposition and game periods. The sample was composed by 1500 ball possessions, corresponding to 14 games randomly selected from the International Championships played during 2008 and 2010 (World Championship, Four nations tournament and classificatory phases for World Championship) by teams from different competition levels (HIGH, INTERMEDIATE and LOW). The effects of the predictor variables on successful ball possessions according to the three game contexts (HIGH vs. HIGH; HIGH vs. LOW; LOW vs. LOW games) were analyzed using Binomial Logistic Regressions. The results showed no interaction with the game period. In HIGH vs. HIGH games, quality of opposition showed an association with ball possession effectiveness with ending zone, offensive system, possession duration, height of shooting and defensive pressures previous to the shot. In HIGH vs. LOW games the important factors were the starting zone, possession duration, defensive pressure previous to the last pass and to the shot, technique of shooting and the number players involved in each ball possession. Finally, in LOW vs. LOW games, the results emphasized the importance of starting and ending zones, the number of passes used and the technique of shooting. In conclusion, elite floorball performance is mainly affected by quality of opposition showing different game patterns in each context that should be considered by coaches when preparing practices and competitions.
Resumo:
In this work, an improvement of the results presented by [1] Abellanas et al. (Weak Equilibrium in a Spatial Model. International Journal of Game Theory, 40(3), 449-459) is discussed. Concretely, this paper investigates an abstract game of competition between two players that want to earn the maximum number of points from a finite set of points in the plane. It is assumed that the distribution of these points is not uniform, so an appropriate weight to each position is assigned. A definition of equilibrium which is weaker than the classical one is included in order to avoid the uniqueness of the equilibrium position typical of the Nash equilibrium in these kinds of games. The existence of this approximated equilibrium in the game is analyzed by means of computational geometry techniques.
Resumo:
This paper presents videogames as a very useful tool in high studies with respect to mathematical matters. It describes the implementation of a videogame developed by its authors which makes it possible for students to reinforce mathematical concepts in a motivating environment. With this work we intend to contribute to the process of engaging a bigger number of university teaching professionals and researchers in the use of serious games and the study of their theoretical frameworks, design, development and application of scientific education. With this idea the authors of the present paper have created and developed the videogame “The Math Castle” which consists in a series of tests through which various aspects of Mathematics are dealt with, especially in the areas of Discrete Mathematics, which due to its nature can be particularly well adapted to this kind of activity, Analysis or Geometry. In this paper there lies a complete description of the game developed and the results obtained with it.
Resumo:
El principio de Teoría de Juegos permite desarrollar modelos estocásticos de patrullaje multi-robot para proteger infraestructuras criticas. La protección de infraestructuras criticas representa un gran reto para los países al rededor del mundo, principalmente después de los ataques terroristas llevados a cabo la década pasada. En este documento el termino infraestructura hace referencia a aeropuertos, plantas nucleares u otros instalaciones. El problema de patrullaje se define como la actividad de patrullar un entorno determinado para monitorear cualquier actividad o sensar algunas variables ambientales. En esta actividad, un grupo de robots debe visitar un conjunto de puntos de interés definidos en un entorno en intervalos de tiempo irregulares con propósitos de seguridad. Los modelos de partullaje multi-robot son utilizados para resolver este problema. Hasta el momento existen trabajos que resuelven este problema utilizando diversos principios matemáticos. Los modelos de patrullaje multi-robot desarrollados en esos trabajos representan un gran avance en este campo de investigación. Sin embargo, los modelos con los mejores resultados no son viables para aplicaciones de seguridad debido a su naturaleza centralizada y determinista. Esta tesis presenta cinco modelos de patrullaje multi-robot distribuidos e impredecibles basados en modelos matemáticos de aprendizaje de Teoría de Juegos. El objetivo del desarrollo de estos modelos está en resolver los inconvenientes presentes en trabajos preliminares. Con esta finalidad, el problema de patrullaje multi-robot se formuló utilizando conceptos de Teoría de Grafos, en la cual se definieron varios juegos en cada vértice de un grafo. Los modelos de patrullaje multi-robot desarrollados en este trabajo de investigación se han validado y comparado con los mejores modelos disponibles en la literatura. Para llevar a cabo tanto la validación como la comparación se ha utilizado un simulador de patrullaje y un grupo de robots reales. Los resultados experimentales muestran que los modelos de patrullaje desarrollados en este trabajo de investigación trabajan mejor que modelos de trabajos previos en el 80% de 150 casos de estudio. Además de esto, estos modelos cuentan con varias características importantes tales como distribución, robustez, escalabilidad y dinamismo. Los avances logrados con este trabajo de investigación dan evidencia del potencial de Teoría de Juegos para desarrollar modelos de patrullaje útiles para proteger infraestructuras. ABSTRACT Game theory principle allows to developing stochastic multi-robot patrolling models to protect critical infrastructures. Critical infrastructures protection is a great concern for countries around the world, mainly due to terrorist attacks in the last decade. In this document, the term infrastructures includes airports, nuclear power plants, and many other facilities. The patrolling problem is defined as the activity of traversing a given environment to monitoring any activity or sensing some environmental variables If this activity were performed by a fleet of robots, they would have to visit some places of interest of an environment at irregular intervals of time for security purposes. This problem is solved using multi-robot patrolling models. To date, literature works have been solved this problem applying various mathematical principles.The multi-robot patrolling models developed in those works represent great advances in this field. However, the models that obtain the best results are unfeasible for security applications due to their centralized and predictable nature. This thesis presents five distributed and unpredictable multi-robot patrolling models based on mathematical learning models derived from Game Theory. These multi-robot patrolling models aim at overcoming the disadvantages of previous work. To this end, the multi-robot patrolling problem was formulated using concepts of Graph Theory to represent the environment. Several normal-form games were defined at each vertex of a graph in this formulation. The multi-robot patrolling models developed in this research work have been validated and compared with best ranked multi-robot patrolling models in the literature. Both validation and comparison were preformed by using both a patrolling simulator and real robots. Experimental results show that the multirobot patrolling models developed in this research work improve previous ones in as many as 80% of 150 cases of study. Moreover, these multi-robot patrolling models rely on several features to highlight in security applications such as distribution, robustness, scalability, and dynamism. The achievements obtained in this research work validate the potential of Game Theory to develop patrolling models to protect infrastructures.
Resumo:
The aim of the present study was to assess the effects of game timeouts on basketball teams? offensive and defensive performances according to momentary differences in score and game period. The sample consisted of 144 timeouts registered during 18 basketball games randomly selected from the 2007 European Basketball Championship (Spain). For each timeout, five ball possessions were registered before (n?493) and after the timeout (n?475). The offensive and defensive efficiencies were registered across the first 35 min and last 5 min of games. A k-means cluster analysis classified the timeouts according to momentary score status as follows: losing ( ?10 to ?3 points), balanced ( ?2 to 3 points), and winning (4 to 10 points). Repeated-measures analysis of variance identified statistically significant main effects between pre and post timeout offensive and defensive values. Chi-square analysis of game period identified a higher percentage of timeouts called during the last 5 min of a game compared with the first 35 min (64.999.1% vs. 35.1910.3%; x ?5.4, PB0.05). Results showed higher post timeout offensive and defensive performances. No other effect or interaction was found for defensive performances. Offensive performances were better in the last 5 min of games, with the least differences when in balanced situations and greater differences when in winning situations. Results also showed one interaction between timeouts and momentary differences in score, with increased values when in losing and balanced situations but decreased values when in winning situations. Overall, the results suggest that coaches should examine offensive and defensive performances according to game period and differences in score when considering whether to call a timeout.
Resumo:
Artículo del proyecto House of Would del estudio Elii en la revista Panorama