19 resultados para Moosehead Junction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

After the successful implementation of a record performing dual-junction solar cell at ultra high concentration, in this paper we present the transition to a triple-junction device. The semiconductor structure of the solar cells is presented and the main changes in respect to a dual-junction design are briefly discussed. Cross-sectional TEM analysis of samples confirms that the quality of the triple-junction structures grown by MOVPE is good, revealing no trace of antiphase disorder, and showing flat, sharp and clear interfaces between the layers. Triple-junction solar cells manufactured on these structures have shown a peak efficiency of 36.2% at 700X, maintaining the efficiency over 35% from 300 to 1200 suns. With some changes in the structure and a fine tuning of its processing, efficiencies close to 40% at 1000 suns are envisaged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extended 3D distributed model based on distributed circuit units for the simulation of triple‐junction solar cells under realistic conditions for the light distribution has been developed. A special emphasis has been put in the capability of the model to accurately account for current mismatch and chromatic aberration effects. This model has been validated, as shown by the good agreement between experimental and simulation results, for different light spot characteristics including spectral mismatch and irradiance non‐uniformities. This model is then used for the prediction of the performance of a triple‐junction solar cell for a light spot corresponding to a real optical architecture in order to illustrate its suitability in assisting concentrator system analysis and design process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented here aims to reduce the cost of multijunction solar cell technology by developing ways to manufacture them on cheap substrates such as silicon. In particular, our main objective is the growth of III-V semiconductors on silicon substrates for photovoltaic applications. The goal is to create a GaAsP/Si virtual substrates onto which other III-V cells could be integrated with an interesting efficiency potential. This technology involves several challenges due to the difficulty of growing III-V materials on silicon. In this paper, our first work done aimed at developing such structure is presented. It was focused on the development of phosphorus diffusion models on silicon and on the preparation of an optimal silicon surface to grow on it III-V materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The consideration of real operating conditions for the design and optimization of a multijunction solar cell receiver-concentrator assembly is indispensable. Such a requirement involves the need for suitable modeling and simulation tools in order to complement the experimental work and circumvent its well-known burdens and restrictions. Three-dimensional distributed models have been demonstrated in the past to be a powerful choice for the analysis of distributed phenomena in single- and dual-junction solar cells, as well as for the design of strategies to minimize the solar cell losses when operating under high concentrations. In this paper, we present the application of these models for the analysis of triple-junction solar cells under real operating conditions. The impact of different chromatic aberration profiles on the short-circuit current of triple-junction solar cells is analyzed in detail using the developed distributed model. Current spreading conditions the impact of a given chromatic aberration profile on the solar cell I-V curve. The focus is put on determining the role of current spreading in the connection between photocurrent profile, subcell voltage and current, and semiconductor layers sheet resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the key components of highly efficient multi-junction concentrator solar cells is the tunnel junction interconnection. In this paper, an improved 3D distributed model is presented that considers real operation regimes in a tunnel junction. This advanced model is able to accurately simulate the operation of the solar cell at high concentraions at which the photogenerated current surpasses the peak current of the tunnel junctionl Simulations of dual-junction solar cells were carried out with the improved model to illustrate its capabilities and the results have been correlated with experimental data reported in the literature. These simulations show that under certain circumstances, the solar cells short circuit current may be slightly higher than the tunnel junction peak current without showing the characteristic dip in the J-V curve. This behavior is caused by the lateral current spreading toward dark regions, which occurs through the anode/p-barrier of the tunnel junction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concentration photovoltaic (CPV) systems might produce quite uneven irradiance distributions (both on their level and on their spectral distribution) on the solar cell. This effect can be even more evident when the CPV system is slightly off-axis, since they are often designed to assure good uniformity only at normal incidence. The non-uniformities both in absolute irradiance and spectral content produced by the CPV systems, can originate electrical losses in multi-junction solar cells (MJSC). This works is focused on the integration of ray-tracing methods for simulating the irradiance and spectrum maps produced by different optic systems throughout the solar cell surface, with a 3D fully distributed circuit model which simulates the electrical behavior of a state-of-the-art triple-junction solar cell under the different light distributions obtained with ray-tracing. In this study four different CPV system (SILO, XTP, RTP, and FK) comprising Fresnel lenses concentrating sunlight onto the same solar cell are modeled when working on-axis and 0.6 degrees off-axis. In this study the impact of non-uniformities on a CPV system behavior is revealed. The FK outperforms other Fresnel-based CPV systems in both on-axis and off-axis conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quantitative temperature accelerated life test on sixty GaInP/GaInAs/Ge triple-junction commercial concentrator solar cells is being carried out. The final objective of this experiment is to evaluate the reliability, warranty period, and failure mechanism of high concentration solar cells in a moderate period of time. The acceleration of the degradation is realized by subjecting the solar cells at temperatures markedly higher than the nominal working temperature under a concentrator Three experiments at three different temperatures are necessary in order to obtain the acceleration factor which relates the time at the stress level with the time at nominal working conditions. . However, up to now only the test at the highest temperature has finished. Therefore, we can not provide complete reliability information but we have analyzed the life data and the failure mode of the solar cells inside the climatic chamber at the highest temperature. The failures have been all of them catastrophic. In fact, the solar cells have turned into short circuits. We have fitted the failure distribution to a two parameters Weibull function. The failures are wear-out type. We have observed that the busbar and the surrounding fingers are completely deteriorate

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A temperature accelerated life test on commercial concentrator lattice-matched GaInP/GaInAs/Ge triple-junction solar cells has been carried out. The solar cells have been tested at three different temperatures: 119, 126 and 164 °C and the nominal photo-current condition (820 X) has been emulated by injecting current in darkness. All the solar cells have presented catastrophic failures. The failure distributions at the three tested temperatures have been fitted to an Arrhenius-Weibull model. An Arrhenius activation energy of 1.58 eV was determined from the fit. The main reliability functions and parameters (reliability function, instantaneous failure rate, mean time to failure, warranty time) of these solar cells at the nominal working temperature (80 °C) have been obtained. The warranty time obtained for a failure population of 5 % has been 69 years. Thus, a long-term warranty could be offered for these particular solar cells working at 820 X, 8 hours per day at 80 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate 1.81 eV GaInP solar cells approaching the Shockley-Queisser limit with 20.8% solar conversion efficiency, 8% external radiative efficiency, and 80–90% internal radiative efficiency at one-sun AM1.5 global conditions. Optically enhanced voltage through photon recycling that improves light extraction was achieved using a back metal reflector. This optical enhancement was realized at one-sun currents when the non-radiative Sah-Noyce-Shockley junction recombination current was reduced by placing the junction at the back of the cell in a higher band gap AlGaInP layer. Electroluminescence and dark current-voltage measurements show the separate effects of optical management and non-radiative dark current reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-parametric belief propagation (NBP) is a well-known message passing method for cooperative localization in wireless networks. However, due to the over-counting problem in the networks with loops, NBP’s convergence is not guaranteed, and its estimates are typically less accurate. One solution for this problem is non-parametric generalized belief propagation based on junction tree. However, this method is intractable in large-scale networks due to the high-complexity of the junction tree formation, and the high-dimensionality of the particles. Therefore, in this article, we propose the non-parametric generalized belief propagation based on pseudo-junction tree (NGBP-PJT). The main difference comparing with the standard method is the formation of pseudo-junction tree, which represents the approximated junction tree based on thin graph. In addition, in order to decrease the number of high-dimensional particles, we use more informative importance density function, and reduce the dimensionality of the messages. As by-product, we also propose NBP based on thin graph (NBP-TG), a cheaper variant of NBP, which runs on the same graph as NGBP-PJT. According to our simulation and experimental results, NGBP-PJT method outperforms NBP and NBP-TG in terms of accuracy, computational, and communication cost in reasonably sized networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a strategy for solving the feature matching problem in calibrated very wide-baseline camera settings. In this kind of settings, perspective distortion, depth discontinuities and occlusion represent enormous challenges. The proposed strategy addresses them by using geometrical information, specifically by exploiting epipolar-constraints. As a result it provides a sparse number of reliable feature points for which 3D position is accurately recovered. Special features known as junctions are used for robust matching. In particular, a strategy for refinement of junction end-point matching is proposed which enhances usual junction-based approaches. This allows to compute cross-correlation between perfectly aligned plane patches in both images, thus yielding better matching results. Evaluation of experimental results proves the effectiveness of the proposed algorithm in very wide-baseline environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the failure analysis carried out in III-V concentrator multijunction solar cells after a temperature accelerated life test is presented. All the failures appeared have been catastrophic since all the solar cells turned into low shunt resistances. A case study in failure analysis based on characterization by optical microscope, SEM, EDX, EQE and XPS is presented in this paper, revealing metal deterioration in the bus bar and fingers as well as cracks in the semiconductor structure beneath or next to the bus bar. In fact, in regions far from the bus bar the semiconductor structure seems not to be damaged. SEM images have dismissed the presence of metal spikes inside the solar cell structure. Therefore, we think that for these particular solar cells, failures appear mainly as a consequence of a deficient electrolytic growth of the front metallization which also results in failures in the semiconductor structure close to the bus bars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of important but little-investigated problems connected with III-V/Ge heterostructure in the GaInP/GaInAs/Ge multijunction solar cells grown by MOVPE are considered in the paper. The opportunity for successfully applying the combination of reflectance and reflectance anisotropy spectroscopy in situ methods for investigating III-V structure growth on a Ge substrate has been demonstrated. Photovoltaic properties of the III-V/Ge narrow-band subcell of the triple-junction solar cells have been investigated. It has been shown that there are excess currents in the Ge photovoltaic p-n junctions, and they have the tunneling or thermotunneling character. The values of the diode parameters for these current flow mechanisms have been determined. The potential barrier at the III-V/Ge interface was determined and the origin of this barrier formation during MOVPE heterogrowth was suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Progressing beyond 3-junction inverted-metamorphic multijunction solar cells grown on GaAs substrates, to 4-junction devices, requires the development of high quality metamorphic 0.7 eV GaInAs solar cells. Once accomplished, the integration of this subcell into a full, Monolithic, series connected, 4J-IMM structure demands the development of a metamorphic tunnel junction lattice matched to the 1eV GaInAs subcell. Moreover, the 0.7 eV junction adds about 2 hours of growth time to the structure, implying a heavier annealing of the subcells and tunnel junctions grown first. The final 4J structure is above 20 Pm thick, with about half of this thickness used by the metamorphic buffers required to change the lattice constant throughout the structure. Thinning of these buffers would help reduce the total thickness of the 4J structure to decrease its growth cost and the annealing time. These three topics: development of a metamorphic tunnel junction for the 4th junction, analysis of the annealing, and thinning of the structure, are tackled in this work. The results presented show the successful implementation of an antimonide-based tunnel junction for the 4th junction and of pathways to mitigate the impact of annealing and reduce the thickness of the metamorphic buffers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A temperature accelerated life test on concentrator lattice mismatched Ga0.37In0.63P/Ga0.83In0.17As/Ge triple-junction solar cells-on-carrier is being carried out. The solar cells have been tested at three different temperatures: 125, 145 and 165°C and the nominal photo-current condition (500X) is emulated by injecting current in darkness. The final objective of these tests is to evaluate the reliability, warranty period, and failure mechanism of these solar cells in a moderate period of time. Up to now only the test at 165°C has finished. Therefore, we cannot provide complete reliability information, but we have carried out preliminary data and failure analysis with the current results.