994 resultados para ~ Betula sect. Costatae
Resumo:
Within the scope of Russian-German palaeoenvironmental research, Two-Yurts Lake (TYL, Dvuh-Yurtochnoe in Russian) was chosen as the main scientific target area to decipher Holocene climate variability on Kamchatka. The 5x2 km large and 26 m deep lake is of proglacial origin and situated on the eastern flank of Sredinny Ridge at the northwestern end of the Central Kamchatka Valley, outside the direct influence of active volcanism. Here, we present results of a multi-proxy study on sediment cores, spanning about the last 7000 years. The general tenor of the TYL record is an increase in continentality and winter snow cover in conjunction with a decrease in temperature, humidity, and biological productivity after 5000-4500 cal yrs BP, inferred from pollen and diatom data and the isotopic composition of organic carbon. The TYL proxy data also show that the late Holocene was punctuated by two colder spells, roughly between 4500 and 3500 cal yrs BP and between 1000 and 200 cal yrs BP, as local expressions of the Neoglacial and Little Ice Age, respectively. These environmental changes can be regarded as direct and indirect responses to climate change, as also demonstrated by other records in the regional terrestrial and marine realm. Long-term climate deterioration was driven by decreasing insolation, while the short-term climate excursions are best explained by local climatic processes. The latter affect the configuration of atmospheric pressure systems that control the sources as well as the temperature and moisture of air masses reaching Kamchatka.
Resumo:
本文对桦木科植物的研究历史作了详细的总结;在钻研文献的基础上,补充了部分系统学资料,使得花序、花、花粉、叶表皮等各类性状能够在属间进行比较,根据外类群比较、和谐性分析等原则确定了性状的演化极性,利用最大同步法和最小平行演化法对桦木科植物进行了分支分析;对各属的现代分布和地史分布作了描述,在此基础上,讨论了桦木科植物的分布中心、起源地、起源的时间和散布的途径;在第四章,作者试图回到遥远的晚白垩纪和早第三纪,从描绘桦木科植物起源和早期分化的古地理和古气候背景入手,分析了在这种背景下桦木科植物所发生的空间辐射以及植物体本身所产生的形态进化,以求得对桦木科植物起源、散布和分化作出比较合理的解释;最后对桦木科组以上的等级作了分类处理。全文包括五个部分,主要的结论如下: 1、分支分析:广泛阅读桦木科、壳斗科和南青冈科的文献,详细研究中国科学院植物研究所标本馆所藏的桦木科植物的标本。首先以壳斗科和南青冈科作为外类群对各类性状进行了分析,得到一个由22个性状组成的数值矩阵;接着又对上述的22个性状作了和谐性分析,结果有7个性状的CN>O,2,其中3个性状在调整性状状态后被保留,有4个性状在颠倒极性和调整性状状态后仍不和谐被去除.最后得到由18个性状组成的矩阵,该矩阵和谐性检验的结果是:所有性状的KN值和CN值均为O,将此矩阵用最大同步法和最小平行演化法进行分支分析,得到一个相同的分支图。分支图用了19个演化步数,与矩阵的最小步数相同,较好地反映了桦木科植物的属间关系。分支图说明:桤木属是从桦木科植物的祖先中最早分出的一个分支,几乎保留了祖先所有的原始性状;桦木属和桤木属近缘,但并非姊妹群;榛届在桦木科中占有特殊的地位,是桦木科植物的原始类群向进化类群演化的中间纽带;虎棒子属是榛属向鹅耳枥属和铁木属进化过程中分化出的一支;铁木属和鹅耳枥属为姊妹群,在桦木科植物中演化水平最高。 2、地理分布:地理分布分析是以经典分类、系统发育和古植物学三方面的资料为基础,根据生物进化的时、序、空相互统一的观点来讨论的。 根据Takhtajan (1978)对世界植物系的分区,认为:东亚区分布6属、13组、77种,占桦木科植物全部种类的59%,为第一分布中心;大西洋一一北美区分布5属。8组、20种,为第二分布中心;环北方区分布5属、8组,35种,是桦木科植物分化的重要地区。在中国,根据吴征镒(1979)对中国植物区系的分区,认为:中国一一日本森林亚区和中国一一喜马拉雅亚区在种数,组数和属数的分布上分别位居第一和第二。四川及其毗邻省区分布6属、52种,占全部中国种类的70, 3%,是中国桦木科植物的分布中心。 桦木科最早的化石记录是具多个角萌发孔并有带状加厚的桤木粉,发现于日本桑托期.随之这类花粉和另外一种花粉类型:副桤木粉(有微弱带状加厚的三孔粉)在欧亚大陆和北美的地层中便开始普遍起来;可能的桤木属植物的叶子发现于白垩纪最晚期,而可辨认的果序的记录则开始于古新世. 8孔的具带状加厚的桦粉最早见于日本的坎佩尼期,而缺少带状加厚的拟桦粉最早发现于中国内蒙古的梅斯特利克蒂期,以上两类花粉均和现代桦木属植物的花粉相似;可归于同一个化石植物Betula leopoldae的叶子、雄花序,果序和果实的化石发现于加拿大大不列颠哥伦比亚的中始新世地层中。基于果实化石的榛属植物的最早记录发生在欧洲和北美古新世;被认为和榛属有亲缘关系的绝灭属——古鹅耳枥属的叶子,果序和雄花序的化石发现于古新世和始新世;开始见于中国梅斯特利克蒂期的拟榇粉和最早发现于苏格兰古新世的米勒三孔粉也均和榛属植物有关。基于可辨认的花粉和果苞的化石,鹅耳枥属和铁木属分别在晚始新世和早渐新世有了最早的化石记录. 最后根据化石证据和现代地理分布特征提出:以四川为中心的中国中部地区是桦木科植物起源和早期分化的中心;最早的桦木科植物生活在晚白垩纪桑托期,桤木属、榇属、桦木属可能在白垩纪最晚期或古新世时就已经出现了,而最迟不晚于中始新世;鹅耳枥属和铁木属的形成均不晚于晚始新世,到渐新世时,除虎榛子属外,桦木科其它各属均广泛分布在北半球。 3、进化分析:桦木科植物起源和早期演化的晚白垩纪和早第三纪在古地理和古环境方面主要有四个特点:(1)地球板块相对稳定;(2)气候相对一致,区带环流是大气环流的基本成份; (3)恐龙绝灭,哺乳动物作为传播媒介变得重要起来; (4)风媒和虫媒植物共荣。桦木科植物就是在上述背景下起源的。桤木属蒙自桤木组和桤木组最早从祖先类群中分化出来,接着一方面较缓慢地向欧洲散布,并在古新世到达欧洲;另一方面,向中国东北地区散布,然后迅速地扩散到了北极地区,通过白令陆桥在白垩纪最晚期到达了北美。从北美西北部和从欧洲通过大西洋北极陆桥散布到北美东部的桦木科植物在始新世时汇合,形成第二个分化中心。虎榛子属、鹅耳枥属和铁木属植物的大量分化很可能是从全球气候恶化的渐新世开始的,并在分化的同时伴随着其它的桦木科植物向南迁移。桤木属在渐新世时就散布到了当时位于中国东南部的加里曼丹岛;桤木属、鹅耳枥属和铁木属中新世时散布到了墨西哥和中美洲;第四纪冰期加速了桦木科植物的南移,桤木属到达非洲北部和南美洲,桤木属和鹅耳枥属到达台湾岛均发生在更新世。 在环境的选择压力下,桦木科植物经历了一系列的形态演化,作者将这些演化归纳成34个进化趋势。为了对桦木科植物可能祖先的大概轮廓有一个认识,我们又从34个进化趋势中总结出桦木科植物的11个原始特征,并且认为这些特征中的大多数应该是它的祖先拥有的。 (1)裸芽有柄。 (2)气孔器为轮列型或无规则型。 (3)木材具管胞,导管有螺旋加厚,为梯状穿孔。 (4)雌、雄花序共生成总状花序,雄花序位于上部。 (5)花序两性。 (6)雄花序有梗、裸露过冬。 (7)小聚伞花序由多个花组成,苞片多数。 (8)花两性,有花被,子房3室。 (9)花药药室木分离,花丝也不分叉。 (10)花粉粒4-5孔;孔具孔室;孔间有带状加厚;外壁较厚,在孔处翘起并加厚。 (11)具翅坚果小型。 本文提出桦术科植物不可能起源于现存的壳斗科植物,而两者有可能共祖,它们共同的祖先和正型粉类复合群有关,可能来源于正型粉类复合群的某些成员,那么‘正型粉类复合群是否就是金缕梅目和壳斗目进行的中间链环呢?’本文仅作为一个问题提出,而未作回答。 4、系统分类:根据分支分析和表征分类的结果,桦木科是非常自然的一个类群,科内表现出从原始到高级的演化次序并具有三条主要的演化路线。因此,将桦木科划分为三个族与科内的三条演化线相一致,比较符合其属间的系统发育关系。按照各属的变异程度,进一步在桦木族和鹅耳枥族之下分别设立两个亚族。此外在桦木科植物属之下共确立了13个组。桦木科组以上的系统排列为: Betulaceae S. F. Gray Trib. 1. Betuleae Subtrib. 1. Alninae Z. D. Chen subtrib. nov. Alnus Mill. Sect. 1. Clethropsis ( Spach ) Endl. Sect. 2. Alnus Sect. 3. Cremastogyne H. Winkl, Sect. 4. Alnobetula W. D. Koch Subtrib. 2. Betulinae Betula L. Sect. 1. Betulaster ( Spach ) Regel Sect. 2. Betula Sect. 3. Costatae Regel Sect. 4. Chinenses ( Nakai ) Z. D. Chen comb. et stat.nov. Sect. 5. Humiles W.D.Koch Trib. 2. Coryleae Aacheraon Corylus L. Sect. 1, Acanthochlamys Spach Sect. 2. Corylus Trib. 3. Carpineae A. DC. Subtrib. 1. Ostryopsinae Z. D. Chen subtrib. nov.Ostryopsis Dence. Subtrib. 2. Carpininae Ostrya Scop. Carpinus L. Sect. 1. Distegocarpus ( Sieb. et Zucc. ) Sarg. Sect. 2. Carpinus
Resumo:
Radiocarbon-dated pollen, rhizopod, chironomid and total organic carbon (TOC) records from Nikolay Lake (73°20'N, 124°12'E) and a pollen record from a nearby peat sequence are used for a detailed environmental reconstruction of the Holocene in the Lena Delta area. Shrubby Alnus fruticosa and Betula exilis tundra existed during 10,300-4800 cal. yr BP and gradually disappeared after that time. Climate reconstructions based on the pollen and chironomid records suggest that the climate during ca. 10,300-9200 cal. yr BP was up to 2-3 °C warmer than the present day. Pollen-based reconstructions show that the climate was relatively warm during 9200-6000 cal. yr BP and rather unstable between ca. 5800-3700 cal. yr BP. Both the qualitative interpretation of pollen data and the results of quantitative reconstruction indicate that climate and vegetation became similar to modern-day conditions after ca. 3600 cal. yr BP. The chironomid-based temperature reconstruction suggests a relatively warm period between ca. 2300 and 1400 cal. yr BP, which corresponds to the slightly warmer climate conditions reconstructed from the pollen. Modern chironomid and rhizopod assemblages were established after ca. 1400 cal. yr BP.
Resumo:
Pollen, plant macrofossil, loss-on-ignition and radiocarbon analyses of a 1.4-m section in thermokarst topography from Faddeyevskiy Island (75°20'N, 143°50'E, 30 m elevation) provides new information on Late Pleistocene interstadial environmental history of this high Arctic region. Conventional radiocarbon dates (25,700 ± 1000, 32,780 ± 500, 35,200 ± 650 yr BP) and two AMS dates (29,950 ± 660 and 42,990 ± 1280 yr BP) indicate that the deposits accumulated during the Kargian (Boutellier) interval. Numerous mammoth (Mammuthus primigenius) remains that have been collected in vicinity of the site in this study were radio-carbon dated to 36,700-18,500 yr BP. Rare bison (Bison priscus) bones were dated to 32,200 ± 600 and 33,100 ± 320 yr BP. Poaceae, Cyperaceae, and Artemisia pollen dominate the spectra with some Ranunculaceae, Caryophyllaceae, Rosaceae, and Asteraceae. The pollen spectra reflect steppe-like (tundra-steppe) vegetation, which was dominant on the exposed shelf of the Arctic Ocean. Numerous Carex macrofossils suggest that the summer climate was at least 2°C warmer than today. The productivity of the local vegetation during the Kargian interstadial was high enough to feed the population of grazing mammals.
Resumo:
A high-resolution pollen record from Lake Teletskoye documents the climate-related vegetation history of the northern Altai Mountain region during the last millennium. Siberian pine taiga with Scots pine, fir, spruce, and birch dominated the vegetation between ca. AD 1050 and 1100. The climate was similar to modern. In the beginning of the 12th century, birch and shrub alder increased. Lowered pollen concentrations and simultaneous peaks in herbs (especially Artemisia and Poaceae), ferns, and charcoal fragments point to colder and more arid climate conditions than before, with frequent fire events. Around AD 1200, regional climate became warmer and more humid than present, as revealed by an increase of Siberian pine and decreases of dry herb taxa and charcoal contents. Climatic conditions were rather stable until ca. AD 1410. An increase of Artemisia pollen may reflect slightly drier climate conditions between AD 1410 and 1560. Increases in Alnus, Betula, Artemisia, and Chenopodiaceae pollen and in charcoal particle contents may reflect further deterioration of climate conditions between AD 1560 and 1810, consistent with the Little Ice Age. After AD 1850 the vegetation gradually approached the modern one, in conjunction with ongoing climate warming.
Resumo:
New pollen and radiocarbon data from the Bykovsky Peninsula document the Late Pleistocene and Holocene environmental history of the Laptev Sea coast. More than 60 AMS-14C and conventional 14C dates indicate that the deposits accumulated during the last 60,000 radiocarbon yr BP. High concentration of green alga colonies (Pediustrum and Botryococcus) in the investigated sediment show that sedimentation was mostly in shallow water environments. Scarce grass and sedge communities dominated the vegetation 53-60 kyr BP. Climate was cold and dry. Open Poaceae and Cypcraccae associations with Asteraceae, Ranunculaceae, and Cichoriaceac, dominated in the area about 48-42.5 kyr BP. Steppic communities with Artemisia and shrubby tundra communities with Salix and Betula sect. Nanae were also present. Climate was dry, but relatively warm. Vegetation cover became denser about 42.5-33.5 kyr BP, reflecting more favorable climate conditions. Scarce Poaceae communities with some Caryophyllaceae, Asteraceae, Cichoriaceae, and Selaginella rupestris covered the Bykovsky Peninsula area during the Sartan (Late Weichselian) stage about 26-16 kyr BP. Disturbed, uncovered soils were very common in the area. Climate was extremely cold and dry. Poaceae and Cyperaceae associations with Caryophyllaceae, Asteraceae, Cichoriaceae dominated the vegetation in the late Sartan, ca 16-12.2 kyr BP. Climate was significantly warmer than in the early Sartan time. The lee Complex sedimentation was interrupted about 12 kyr BP; most likely it was connected with the beginning of the Allerod warnring. Shrubby (Betula sect. Nanae, Alnusfnuicosa, Salix, Ericales) tundra was widely distributed on the Bykovsky Peninsula during the early-middle Holacene. Climate was most favorable between 8200 and 4500 yr BP. Vegetation became similar to modern after 4500 yr BP, suggesting a deterioration of climate.
Resumo:
In this study a radiocarbon-dated pollen record from Lake Billyakh (65°17'N, 126°47'E; 340 m a.s.l.) in the Verkhoyansk Mountains was used to reconstruct vegetation and climate change since about 15 kyr BP (1 kyr=1000 cal. yr). The pollen record and pollen-based biome reconstruction suggest that open cool steppe and grass and sedge tundra communities with Poaceae, Cyperaceae, Artemisia, Chenopodiaceae, Caryophyllaceae and Selaginella rupestris dominated the area from 15 to 13.5 kyr BP. On the other hand, the constant presence of Larix pollen in quantities comparable to today's values points to the constant presence of boreal deciduous conifer trees in the regional vegetation during the last glaciation. A major spread of shrub tundra communities, including birch (Betula sect. Nanae), alder (Duschekia fruticosa) and willow (Salix) species, is dated to 13.5-12.7 kyr BP, indicating a noticeable increase in precipitation toward the end of the last glaciation, particularly during the Allerød Interstadial. Between 12.7 and 11.4 kyr BP pollen percentages of herbaceous taxa rapidly increased, whereas shrub taxa percentages decreased, suggesting strengthening of the steppe communities associated with the relatively cold and dry Younger Dryas Stadial. However, the pollen data in hand indicate that Younger Dryas climate was less severe than the climate during the earlier interval from 15 to 13.5 kyr BP. The onset of the Holocene is marked in the pollen record by the highest values of shrub and lowest values of herbaceous taxa, suggesting a return of warmer and wetter conditions after 11.4 kyr BP. Percentages of tree taxa increase gradually and reach maximum values after 7 kyr BP, reflecting the spread of boreal cold deciduous and taiga forests in the region. An interval between 7 and 2 kyr BP is noticeable for the highest percentages of Scots spine (Pinus subgen. Diploxylon), spruce (Picea) and fir (Abies) pollen, indicating mid-Holocene spread of boreal forest communities in response to climate amelioration and degradation of the permafrost layer.
Resumo:
Pollen data from a Levinson-Lessing Lake sediment core (74°28'N, 98°38'E) and Cape Sabler, Taymyr Lake permafrost sequences (74°33'N, 100°32'E) reveal substantial environmental changes on the northern Taymyr Peninsula during the last c. 32 000 14C years. The continuous records confirm that a scarce steppe-like vegetation with Poaceae, Artemisia and Cyperaceae dominated c. 32 000-10 300 14C yr BP, while tundra-like vegetation with Oxyria, Ranunculaceae and Caryophyllaceae grew in wetter areas. The coldest interval occurred c. 18 000 yr BP. Lateglacial pollen data show several warming events followed by a climate deterioration c. 10 500 14C yr BP, which may correspond with the Younger Dryas. The Late Pleistocene/Holocene transition, c. 10 300-10 000 14C yr BP, is characterized by a change from the herb-dominated vegetation to shrubby tundra with Betula sect. Nanae and Salix. Alnus fruticosa arrived locally c. 9000-8500 14C yr BP and disappeared c. 4000-3500 14C yr BP. Communities of Betula sect. Nanae, broadly distributed at c. 10 000-3500 14C yr BP, almost disappeared when vegetation became similar to the modern herb tundra after 3500-3000 14C yr BP. Quantitative climate reconstructions show Last Glacial Maximum summer temperature about 4°C below the present and Preboreal (c. 10 000 14C yr BP) temperature 2-4°C above the present. Maximum summer temperature occurred between 10 000 and 5500 14C yr BP; later summers were similar to present or slightly warmer.
Resumo:
Although the climate development over the Holocene in the Northern Hemisphere is well known, palaeolimnological climate reconstructions reveal spatiotemporal variability in northern Eurasia. Here we present a multi-proxy study from north-eastern Siberia combining sediment geochemistry, and diatom and pollen data from lake-sediment cores covering the last 38,000 cal. years. Our results show major changes in pyrite content and fragilarioid diatom species distributions, indicating prolonged seasonal lake-ice cover between ~13,500 and ~8,900 cal. years BP and possibly during the 8,200 cal. years BP cold event. A pollen-based climate reconstruction generated a mean July temperature of 17.8°C during the Holocene Thermal Maximum (HTM) between ~8,900 and ~4,500 cal. years BP. Naviculoid diatoms appear in the late Holocene indicating a shortening of the seasonal ice cover that continues today. Our results reveal a strong correlation between the applied terrestrial and aquatic indicators and natural seasonal climate dynamics in the Holocene. Planktonic diatoms show a strong response to changes in the lake ecosystem due to recent climate warming in the Anthropocene. We assess other palaeolimnological studies to infer the spatiotemporal pattern of the HTM and affirm that the timing of its onset, a difference of up to 3,000 years from north to south, can be well explained by climatic teleconnections. The westerlies brought cold air to this part of Siberia until the Laurentide ice-sheet vanished 7,000 years ago. The apparent delayed ending of the HTM in the central Siberian record can be ascribed to the exceedance of ecological thresholds trailing behind increases in winter temperatures and decreases in contrast in insolation between seasons during the mid to late Holocene as well as lacking differentiation between summer and winter trends in paleolimnological reconstructions.
Resumo:
Studies of the annual pollen and spore deposition in different areas of the Lena Delta were undertaken for the first time in the Asian sector of the Arctic during the Russian-German ''LENA 98'' and ''LENA 99'' expeditions in the framework of the International ''Laptev Sea System-2000'' Project. To achieve this objective, three spore-pollen traps were set up along the meridional delta profile in accordance with the European Pollen Monitoring Programme for the period July 1998 to August 1999. A comparison between the results of spore-pollen analysis of the contents of traps and the surrounding vegetation was performed. The results confirmed the current spore-pollen spectra are comprised both of pollen and spores of the local plants and of long-distance pollen and spores. The dependence of the long-distance pollen deposition on the character of the wind regime of the region was established. The prevailing southerly and southeasterly wind direction determines the main pollen influx of tree species from the areas of their growth south of the delta. The features of the morphological structure and fossilization of pollen and the features of the productive capability and plant growing conditions are of large significance in the pollen transfer and deposition.