1000 resultados para xylanase characterization


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The alkalophilic bacteria Bacillus licheniformis 77-2 produces significant quantities of thermostable cellulase-free xylanases. The crude xylanase was purified to apparent homogeneity by gel filtration (G-75) and ionic exchange chromatography (carboxymethyl sephadex, Q sepharose, and Mono Q), resulting in the isolation of two xylanases. The molecular masses of the enzymes were estimated to be 17 kDa (X-I) and 40 kDa (X-II), as determined by SDS-PAGE. The K(m) and V(max) values were 1.8 mg/mL and 7.05 U/mg protein (X-I), and 1.05 mg/mL and 9.1 U/mg protein (X-II). The xylanases demonstrated optimum activity at pH 7.0 and 8.0-10.0 for xylanase X-I and X-II, respectively, and, retained more than 75% of hydrolytic activity up to pH 11.0. The purified enzymes were most active at 70 and 75 degrees C for X-I and X-II, respectively, and, retained more than 90% of hydrolytic activity after 1 h of heating at 50 degrees C and 60 degrees C for X-I and X-II, respectively. The predominant products of xylan hydrolysates indicated that these enzymes were endoxylanases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A xylanase was cloned from Aspergillus niveus and successfully expressed in Aspergillus nidulans (XAN). The full-length gene consisted of 890 bp and encoded 275 mature amino acids with a calculated mass of 31.3 kDa. The deduced amino acid sequence was highly homologous with the xylanase belonging to family 11 of the glycoside hydrolases. The recombinant protein was purified to electrophoretic homogeneity by anion-exchange chromatography and gel filtration. The optima of pH and temperature for the recombinant enzyme were 5.0 and 65 degrees C, respectively. The thermal stability of the recombinant xylanase was extremely improved by covalent immobilization on glyoxyl agarose with 91.4% of residual activity after 180 min at 60 degrees C, on the other hand, the free xylanase showed a half-life of 9.9 min at the same temperature. Affinity chromatography on Concanavalin A- and Jacalin-agarose columns followed by SDS-PAGE analyses showed that the XAN has O- and N-glycans. XAN promotes hydrolysis of xylan resulting in xylobiose, xylotriose and xylotetraose. Intermediate degradation of xylan resulting in xylo-oligomers is appealing for functional foods as the beneficial effect of oligosaccharides on gastrointestinal micro flora includes preventing proliferation of pathogenic intestinal bacteria and facilitates digestion and absorption of nutrients. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Xylanases (EC 3.2.1.8) hydrolyze xylan, one of the most abundant plant polysaccharides found in nature, and have many potential applications in biotechnology. Methods: Molecular dynamics simulations were used to investigate the effects of temperature between 298 to 338 K and xylobiose binding on residues located in the substrate-binding cleft of the family 11 xylanase from Bacillus circulans (BcX). Results: In the absence of xylobiose the BcX exhibits temperature dependent movement of the thumb region which adopts an open conformation exposing the active site at the optimum catalytic temperature (328 K). In the presence of substrate, the thumb region restricts access to the active site at all temperatures, and this conformation is maintained by substrate/protein hydrogen bonds involving active site residues, including hydrogen bonds between Tyr69 and the 2` hydroxyl group of the substrate. Substrate access to the active site is regulated by temperature dependent motions that are restricted to the thumb region, and the BcX/substrate complex is stabilized by extensive intermolecular hydrogen bonding with residues in the active site. General significance: These results call for a revision of both the ""hinge-bending"" model for the activity of group 11 xylanases, and the role of Tyr69 in the catalytic mechanism. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A strain of Aspergillus versicolor produces a xylanolytic complex containing two components, the minor component being designated xylanase II. The highest production of xylanase II was observed in cultures grown for 5 days in 1% wheat bran as carbon source, at pH 6.5. Xylanase II was purified 28-fold by DEAE-Sephadex and HPLC GF-5 10 gel filtration. Xylanase II was a monomeric glycoprotein, exhibiting a molecular mass of 32 kDa with 14.1% of carbohydrate content. Optimal pH and temperature values for the enzyme activity were about 6.0-7.0 and 55 degreesC, respectively. Xylanase II thermoinactivation at 50degreesC showed a biphasic curve. The ions Hg2+, Cu2+ and the detergent SDS were strong inhibitors, while Mn2+ ions and dithiothreitol were stimulators of the enzyme activity. The enzyme was specific for xylans, showing higher specific activity on birchwood xylan. The Michaelis-Menten constant (K-m) for birchwood xylan was estimated to be 2.3 mg ml(-1) while maximal velocity (V-max) was 233.1 mumol mg(-1) min(-1) of protein. The hydrolysis of oat spell xylan released only xylooligosaccharides. Published by Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The production of extracellular cellulase-free xylanase from Trichoderma inhamatum was evaluated in liquid Vogel medium with different carbon sources as natural substrates and agricultural or agro-industrial wastes. Optimal production of 244.02 U/mL was obtained with xylan as carbon source, pH 6.0 at 25 degrees C, 120 rpm, and 60-h time culture. Optimal conditions for enzyme activity were 50 degrees C and pH 5.5. Thermal stability of T. inhamatum xylanolytic complex expressed as T(1/2) was 2.2 h at 40 degrees C and 2 min at 50 degrees C. The pH stability was high from 4.0 to 11.0.These results indicate possible employment of such enzymatic complex in some industrial processes which require activity in acid pH, wide-ranging pH stability, and cellulase activity absence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Application of the xylanase in the pulp bleaching process has been shown to be effective in decreasing the amount of chlorinating agents in the process and improving the brightness of the pulp. The use of thermostable cellulase-free xylanase might enhance both the technical and economic feasibility of the process. In this work an alkalophylic strain of Bacillus sp 77-2, was isolated which showed a high production of xylanase and free cellulases. The xylanase of Bacillus sp displayed an optimum pH of 6.0 (with 70% activity at pH 9.0), all optimum temperature of 60 degrees C, pH stability in the range 5-10 and thermal stability of 50 degrees C. These characteristics are important to the kraft pulp bleaching because they are similar to those found in the industrial paper environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent decades, xylanases have been used in many processing industries. This study describes the xylanase production by Penicillium glabrum using brewer's spent grain as substrate. Additionally, this is the first work that reports the purification and characterization of a xylanase using this agroindustrial waste. Optimal production was obtained when P. glabrum was grown in liquid medium in pH 5.5, at 25 °C, under stationary condition for six days. The xylanase from P. glabrum was purified to homogeneity by a rapid and inexpensive procedure, using ammonium sulfate fractionation and molecular exclusion chromatography. SDS-PAGE analysis revealed one band with estimated molecular mass of 18.36 kDa. The optimum activity was observed at 60 °C, in pH 3.0. The enzyme was very stable at 50 °C, and high pH stability was verified from pH 2.5 to 5.0. The ion Mn2+ and the reducing agents β-mercaptoethanol and DTT enhanced xylanase activity, while the ions Hg2+, Zn2+, and Cu2+ as well as the detergent SDS were strong inhibitors of the enzyme. The use of brewer's spent grain as substrate for xylanase production cannot only add value and decrease the amount of this waste but also reduce the xylanase production cost. © 2013 Adriana Knob et al.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The filamentous fungus Aspergillus nidulans has been used as a fungal model system to study the regulation of xylanase production. These genes are activated at transcriptional level by the master regulator the transcriptional factor XInR and repressed by carbon catabolite repression (CCR) mediated by the wide-domain repressor CreA. Here, we screened a collection of 42 A. nidulans F-box deletion mutants grown either in xylose or xylan as the single carbon source in the presence of the glucose analog 2-deoxy-D-glucose, aiming to identify mutants that have deregulated xylanase induction. We were able to recognize a null mutant in a gene (fbxA) that has decreased xylanase activity and reduced xInA and xInD mRNA accumulation. The Delta fbxA mutant interacts genetically with creAd-30, creB15, and creC27 mutants. FbxA is a novel protein containing a functional F-box domain that binds to Skp1 from the SCF-type ligase. Blastp analysis suggested that FbxA is a protein exclusive from fungi, without any apparent homologs in higher eukaryotes. Our work emphasizes the importance of the ubiquitination in the A. nidulans xylanase induction and CCR. The identification of FbxA provides another layer of complexity to xylanase induction and CCR phenomena in filamentous fungi. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to correlate the efficiency of enzymatic hydrolysis of the cellulose contained in a sugarcane bagasse sample pretreated with dilute H(2)SO(4) with the levels of independent variables such as initial content of solids and loadings of enzymes and surfactant (Tween 20), for two cellulolytic commercial preparations. The preparations, designated cellulase I and cellulase II, were characterized regarding the activities of total cellulases, endoglucanase, cellobiohydrolase, cellobiase, beta-glucosidase, xylanase, and phenoloxidases (laccase, manganese and lignin peroxidases), as well as protein contents. Both extracts showed complete cellulolytic complexes and considerable activities of xylanases, without activities of phenoloxidases. For the enzymatic hydrolyses, two 2(3) central composite full factorial designs were employed to evaluate the effects caused by the initial content of solids (1.19-4.81%, w/w) and loadings of enzymes (1.9-38.1 FPU/g bagasse) and Tween 20 (0.0-0.1 g/g bagasse) on the cellulose digestibility. Within 24 h of enzymatic hydrolysis, all three independent variables influenced the conversion of cellulose by cellulase I. Using cellulase II, only enzyme and surfactant loadings showed significant effects on cellulose conversion. An additional experiment demonstrated the possibility of increasing the initial content of solids to values much higher than 4.81% (w/w) without compromising the efficiency of cellulose conversion, consequently improving the glucose concentration in the hydrolysate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A strain of Pleurotus ostreatus was grown in tomato pomace as sole carbon source for production of laccase. The culture of P. ostreatus revealed a peak of laccase activity (147 U/L of fermentation broth) on the 4th day of culture with a specific activity of 2.8 U/mg protein. Differential chromatographic behaviour of laccase was investigated on affinity chromatographic matrices containing either urea, acetamide, ethanolamine or IDA as affinity ligands. Laccase exhibited retention on such affinity matrices and it was purified on a Sepharose 6B-BDGE-urea column with final enzyme recoveries of about 60%, specific activity of 6.0 and 18.0 U/mg protein and purification factors in the range of 14-46. It was also possible to demonstrate that metal-free laccase did not adsorb to Sepharose 6B-BDGE-urea column which suggests that adsorption of native laccase on this affinity matrix was apparently due to the specific interaction of carbonyl groups available on the matrix with the active site Cu (II) ions of laccase. The kinetic parameters (V (max), K (m) , K (cat), and K (cat)/K (m) ) of the purified enzyme for several substrates were determined as well as laccase stability and optimum pH and temperature of enzyme activity. This is the first report describing the production of laccase from P. ostreatus grown on tomato pomace and purification of this enzyme based on affinity matrix containing urea as affinity ligand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present studies it is clear that Bacillus pumilus xylanase is having the characteristic suited for an industrial enzyme (xylanases that are active and stable at elevated temperatures and alkaline pH are needed). SSF production of xylanases and its application appears to be an innovative technology where the fermented substrate is the enzyme source that is used directly in the bleaching process without a prior downstream processing. The direct use of SSF enzymes in bleaching is a relatively new biobleaching approach. This can certainly benefit the bleaching process to lower the xylanase production costs and improve the economics and viability of the biobleaching technology. The application of enzymes to the bleaching process has been considered as an environmentally friendly approach that can reduce the negative impact on the environment exerted by the use of chlorine-based bleaching agents. It has been demonstrated that pretreatment of kraft pulp with xylanase prior to bleaching (biobleaching) can facilitate subsequent removal of lignin by bleaching chemicals, thereby, reducing the demand for elemental chlorine or improving final paper brightness. Using this xylanase pre-treatment, has resulted in an increased of brightness (8.5 Unit) when compared to non-enzymatic treated bleached pulp prepared using identical conditions. Reduction of the consumption of active chlorine can be achieved which results in a decrease in the toxicity, colour, chloride and absorbable organic halogen (AOX) levels of bleaching effluents. The xylanase treatment improves drainage, strength properties and the fragility of pulps, and also increases the brightness of pulps. This positive result shows that enzyme pre-treatment facilitates the removal of chromophore fragments of pulp there by making the process more environment friendly

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An Aspergillus giganteus strain was isolated as an excellent producer of xylanase associated with low levels of cellulase. Optimal xylanase production was obtained in liquid VOGEL medium containing xylan as carbon source, pH 6.5 to 7.0, at 25degreesC and. under shaking at 120 rpm during 84h. Among the several carbon sources tested, higher xylanase production was verified in xylan, xylose, sugar-cane bagasse, wheat bran and corn cob cultures, respectively. Optimal conditions for activity determination were 50degreesC and pH 6.0. The xylanolytic complex of A. giganteus showed low thermal stability with T-50 of 2 h, 13 min and I min when it was incubated at 40, 50 and 60degreesC, respectively, and high stability from pH 4.5 to 10.5, with the best interval between 7.0 to 7.5. This broad range of stability in alkali pH indicates a potential applicability in some industrial processes, which require such condition. Xylanolytic activity of A. giganteus was totally inhibited by Hg+2, Cu+2 and SDS at 10 mm. The analysis of the products from the oat spelts xylan hydrolysis through thin-layer chromatography indicated endoxylanase activity, lack of debranching enzymes and P-xylosidase activity in assay conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An endoxylanase (beta-1,4-xylan xylanohydrolase, EC 3.2.1.8) was purified from the culture filtrate of a strain of Aspergillus versicolor grown on oat wheat. The enzyme was purified to homogeneity by chromatography on DEAE-cellulose and Sephadex G-75. The purified enzyme was a monomer of molecular mass estimated to be 19 kDa by SDS-PAGE and gel filtration. The enzyme was glycoprotein with 71% carbohydrate content and exhibited a pI of 5.4. The purified xylanase was specific for xylan hydrolysis. The enzyme had a K-m of 6.5 mg ml(-1) and a V-max of 1440 U (mg protein)(-1). (C) 1998 Federation of European Microbiological Societies. Published by Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Xylanase, β-glucosidase, β-xylosidase, endoglucanase and polygalacturonase production from Curvularia inaequalis was carried out by means of solid-state and submerged fermentation using different carbon sources. β-Glucosidase, β-xylosidase, polygalacturonase and xylanase produced by the microorganisms were characterized. β-Glucosidase presented optimum activity at pH 5.5 whereas xylanase, polygalacturonase and β-xylosidase activities were optimal at pH 5.0. Maximal activity of β-glucosidase was determined at 60°C, β-xylosidase at 70°C, and polygalacturonase and xylanase at 55°C. These enzymes were stable at acidic to neutral pH and at 40-45°C. The crude enzyme solution was studied for the hydrolysis of agricultural residues.