939 resultados para window chamber
Resumo:
Understanding tumor vascular dynamics through parameters such as blood flow and oxygenation can yield insight into tumor biology and therapeutic response. Hyperspectral microscopy enables optical detection of hemoglobin saturation or blood velocity by either acquiring multiple images that are spectrally distinct or by rapid acquisition at a single wavelength over time. However, the serial acquisition of spectral images over time prevents the ability to monitor rapid changes in vascular dynamics and cannot monitor concurrent changes in oxygenation and flow rate. Here, we introduce snap shot-multispectral imaging (SS-MSI) for use in imaging the microvasculature in mouse dorsal-window chambers. By spatially multiplexing spectral information into a single-image capture, simultaneous acquisition of dynamic hemoglobin saturation and blood flow over time is achieved down to the capillary level and provides an improved optical tool for monitoring rapid in vivo vascular dynamics.
Resumo:
Na sepse, o mecanismo desencadeador de morte é a disfunção múltipla de órgãos e sistemas. Com isso a microcirculação é considerada o motor na patogênese da sepse. A perfusão microcirculatória representa um dos principais objetivos para melhorar as taxas de sobrevida. Uma vez reconhecida a síndrome séptica, o protocolo clínico estabelece o uso de fluidoterapia com salina, de forma vigorosa na primeira hora e seguida de suporte inotrópico com Dobutamina. A partir daí foi levantada a hipótese das drogas β-agonistas serem relevantes na recuperação da microcirculação, antes mesmo de seu conhecido papel na recuperação do choque cardiogênico. Assim, estudar o papel da Dobutamina, um β-agonista, na resposta adrenérgica em situação de sepse se faz necessário e urgente e o entendimento de sua ação, associada à reposição volêmica, foi objeto deste estudo. Foram usados no presente estudo, 78 hamsters, induzida a endotoxemia com LPS (2mg/kg/de massa de peso corporal) e divididos em 9 grupos: controle (n=10), endotóxico(n=10), endotóxico tratados com Dobutamina na dose de 5 e 15 μg /kg/min (n=10), Isoproterenol(n=10), ressuscitação volêmica (n=10) e ressuscitação volêmica associada à Dobutamina 5 (n=10) e 15 μg/kg/min (n=4) e Isoproterenol (n=4). Foram comparados os resultados de recuperação da densidade capilar funcional ao longo do tempo entre os grupos, e obteve-se resultado estatisticamente significativo no grupo em que se usa Dobutamina de 5μg/kg/min associada à ressuscitação volêmica p< 0,05. Em conclusão este estudo mostra que o papel da ressuscitação volêmica é crucial na resposta da microcirculação para melhorar a densidade capilar funcional, que a velocidade da hemácia capilar tem relação direta com a melhora na perfusão tecidual e que a associação de recuperação volêmica com solução salina e Dobutamina na dose de 5 μg /kg /min melhora significativamente sua resposta e melhora a perfusão.
Resumo:
Tissue-engineered skeletal muscle can serve as a physiological model of natural muscle and a potential therapeutic vehicle for rapid repair of severe muscle loss and injury. Here, we describe a platform for engineering and testing highly functional biomimetic muscle tissues with a resident satellite cell niche and capacity for robust myogenesis and self-regeneration in vitro. Using a mouse dorsal window implantation model and transduction with fluorescent intracellular calcium indicator, GCaMP3, we nondestructively monitored, in real time, vascular integration and the functional state of engineered muscle in vivo. During a 2-wk period, implanted engineered muscle exhibited a steady ingrowth of blood-perfused microvasculature along with an increase in amplitude of calcium transients and force of contraction. We also demonstrated superior structural organization, vascularization, and contractile function of fully differentiated vs. undifferentiated engineered muscle implants. The described in vitro and in vivo models of biomimetic engineered muscle represent enabling technology for novel studies of skeletal muscle function and regeneration.
Resumo:
Therapeutic inhibition of poly(ADP-ribose) polymerase (PARP), as monotherapy or to supplement the potencies of other agents, is a promising strategy in cancer treatment. We previously reported that the first PARP inhibitor to enter clinical trial, rucaparib (AG014699), induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK) 10-fold more potently than its commercially available inhibitor ML-9. Moreover, rucaparib produces additive relaxation above the maximal degree achievable with ML-9, suggesting that MLCK inhibition is not solely responsible for dilation. Inhibition of nitric oxide synthesis using L-NMMA also failed to impact rucaparib's activity. Rucaparib contains the nicotinamide pharmacophore, suggesting it may inhibit other NAD+-dependent processes. NAD+ exerts P2 purinergic receptor-dependent inhibition of smooth muscle contraction. Indiscriminate blockade of the P2 purinergic receptors with suramin abrogated rucaparib-induced vasodilation in rat arterial tissue without affecting ML-9-evoked dilation, although the specific receptor subtypes responsible have not been unequivocally identified. Furthermore, dorsal window chamber and real time tumor vessel perfusion analyses in PARP-1-/- mice indicate a potential role for PARP in dilation of tumor-recruited vessels. Finally, rucaparib provoked relaxation in 70% of patient-derived tumor-associated vessels. These data provide tantalising evidence of the complexity of the mechanism underlying rucaparib-mediated vasodilation.
Resumo:
Continuous infusion of intravenous prostaglandin E1 (PgE1, 2.5 mug/kg/min) was used to determine how vasodilation affects oxygen consumption of the microvascular wall and tissue pO(2) in the hamster window chamber model. While systemic measurements (mean arterial pressure and heart rate) and central blood gas measurements were not affected, PgE1 treatment caused arteriolar (64.6 +/- 25.1 microm) and venular diameter (71.9 +/- 29.5 microm) to rise to 1.15 +/- 0.21 and 1.06 +/- 0.19, respectively, relative to baseline. Arteriolar (3.2 x 10(-2) +/- 4.3 x 10(-2) nl/s) and venular flow (7.8 x 10(-3) +/- 1.1 x 10(-2)/s) increased to 1.65 +/- 0.93 and 1.32 +/- 0.72 relative to baseline. Interstitial tissue pO(2) was increased significantly from baseline (21 +/- 8 to 28 +/- 7 mmHg; P < 0.001). The arteriolar vessel wall gradient, a measure of oxygen consumption by the microvascular wall decreased from 20 +/- 6 to 16 +/- 3 mmHg (P < 0.001). The arteriolar vessel wall gradient, a measure of oxygen consumption by the vascular wall, decreased from 20 +/- 6 to 16 +/- 3 mmHg (P < 0.001). This reduction reflects a 20% decrease in oxygen consumption by the vessel wall and up to 50% when cylindrical geometry is considered. The venular vessel wall gradient decreased from 12 +/- 4 to 9 +/- 4 mmHg (P < 0.001). Thus PgE1-mediated vasodilation has a positive microvascular effect: enhancement of tissue perfusion by increasing flow and then augmentation of tissue oxygenation by reducing oxygen consumption by the microvascular wall.
Resumo:
INTRODUCTION: This study was designed to examine differences in the arteriolar vasoconstrictive response between arginine vasopressin (AVP) and norepinephrine (NE) on the microcirculatory level in the hamster window chamber model in unanesthetized, normotonic hamsters using intravital microscopy. It is known from patients with advanced vasodilatory shock that AVP exerts strong additional vasoconstriction when incremental dosage increases of NE have no further effect on mean arterial blood pressure (MAP). METHODS: In a prospective controlled experimental study, eleven awake, male golden Syrian hamsters were instrumented with a viewing window inserted into the dorsal skinfold. NE (2 microg/kg/minute) and AVP (0.0001 IU/kg/minute, equivalent to 4 IU/h in a 70 kg patient) were continuously infused to achieve a similar increase in MAP. According to their position within the arteriolar network, arterioles were grouped into five types: A0 (branch off small artery) to A4 (branch off A3 arteriole). RESULTS: Reduction of arteriolar diameter (NE, -31 +/- 12% versus AVP, -49 +/- 7%; p = 0.002), cross sectional area (NE, -49 +/- 17% versus AVP, -73 +/- 7%; p = 0.002), and arteriolar blood flow (NE, -62 +/- 13% versus AVP, -80 +/- 6%; p = 0.004) in A0 arterioles was significantly more pronounced in AVP animals. There was no difference in red blood cell velocities in A0 arterioles between groups. The reduction of diameter, cross sectional area, red blood cell velocity, and arteriolar blood flow in A1 to A4 arterioles was comparable in AVP and NE animals. CONCLUSION: Within the microvascular network, AVP exerted significantly stronger vasoconstriction on large A0 arterioles than NE under physiological conditions. This observation may partly explain why AVP is such a potent vasopressor hormone and can increase systemic vascular resistance even in advanced vasodilatory shock unresponsive to increases in standard catecholamine therapy.
Resumo:
Awake hamsters equipped with the dorsal window chamber preparation were subjected to hemorrhage of 50% of the estimated blood volume. Initial resuscitation (25% of estimated blood volume) with polymerized bovine hemoglobin (PBH) or 10% hydroxyethyl starch (HES) occurred in concert with an equivolumetric bleeding to simulate the early, prehospital setting (exchange transfusion). Resuscitation (25% of estimated blood volume) without bleeding was performed with PBH, HES, or autologous red blood cells (HES-RBCs). Peripheral microcirculation, tissue oxygenation, and systemic hemodynamic and blood gas parameters were assessed. After exchange transfusion, base deficit was -8.6 +/- 3.7 mmol/L (PBH) and -5.1 +/- 5.3 mmol/L (HES) (not significant). Functional capillary density was 17% +/- 6% of baseline (PBH) and 31% +/- 11% (HES) (P < 0.05) and arteriolar diameter 73% +/- 3% of baseline (PBH) and 90% + 5% (HES) (P < 0.01). At the end, hemoglobin levels were 3.7 +/- 0.3 g/dL with HES, 8.2 +/- 0.6 g/dL with PBH, and 10.4 +/- 0.8 g/dL with HES-RBCs (P < 0.01 HES vs. PBH and HES-RBCs, P < 0.05 PBH vs. HES-RBCs). Base excess was restored to baseline with PBH and HES-RBCs, but not with HES (P < 0.05). Functional capillary density was 46% +/- 5% of baseline (PBH), 62% + 20% (HES-RBCs), and 36% +/- 19% (HES) (P < 0.01 HES-RBCs vs. HES). Peripheral oxygen delivery and consumption was highest with HES-RBCs, followed by PBH (P < 0.05 HES-RBCs vs. PBH, P < 0.01 HES-RBCs and PBH vs. HES). In conclusion, the PBH led to a correction of base deficit comparable to blood transfusion. However, oxygenation of the peripheral tissue was inferior with PBH. This was attributed to its negative impact on the peripheral microcirculation caused by arteriolar vasoconstriction.
Resumo:
Tissue engineering of biomimetic skeletal muscle may lead to development of new therapies for myogenic repair and generation of improved in vitro models for studies of muscle function, regeneration, and disease. For the optimal therapeutic and in vitro results, engineered muscle should recreate the force-generating and regenerative capacities of native muscle, enabled respectively by its two main cellular constituents, the mature myofibers and satellite cells (SCs). Still, after 20 years of research, engineered muscle tissues fall short of mimicking contractile function and self-repair capacity of native skeletal muscle. To overcome this limitation, we set the thesis goals to: 1) generate a highly functional, self-regenerative engineered skeletal muscle and 2) explore mechanisms governing its formation and regeneration in vitro and survival and vascularization in vivo.
By studying myogenic progenitors isolated from neonatal rats, we first discovered advantages of using an adherent cell fraction for engineering of skeletal muscles with robust structure and function and the formation of a SC pool. Specifically, when synergized with dynamic culture conditions, the use of adherent cells yielded muscle constructs capable of replicating the contractile output of native neonatal muscle, generating >40 mN/mm2 of specific force. Moreover, tissue structure and cellular heterogeneity of engineered muscle constructs closely resembled those of native muscle, consisting of aligned, striated myofibers embedded in a matrix of basal lamina proteins and SCs that resided in native-like niches. Importantly, we identified rapid formation of myofibers early during engineered muscle culture as a critical condition leading to SC homing and conversion to a quiescent, non-proliferative state. The SCs retained natural regenerative capacity and activated, proliferated, and differentiated to rebuild damaged myofibers and recover contractile function within 10 days after the muscle was injured by cardiotoxin (CTX). The resulting regenerative response was directly dependent on the abundance of SCs in the engineered muscle that we varied by expanding starting cell population under different levels of basic fibroblast growth factor (bFGF), an inhibitor of myogenic differentiation. Using a dorsal skinfold window chamber model in nude mice, we further demonstrated that within 2 weeks after implantation, initially avascular engineered muscle underwent robust vascularization and perfusion and exhibited improved structure and contractile function beyond what was achievable in vitro.
To enhance translational value of our approach, we transitioned to use of adult rat myogenic cells, but found that despite similar function to that of neonatal constructs, adult-derived muscle lacked regenerative capacity. Using a novel platform for live monitoring of calcium transients during construct culture, we rapidly screened for potential enhancers of regeneration to establish that many known pro-regenerative soluble factors were ineffective in stimulating in vitro engineered muscle recovery from CTX injury. This led us to introduce bone marrow-derived macrophages (BMDMs), an established non-myogenic contributor to muscle repair, to the adult-derived constructs and to demonstrate remarkable recovery of force generation (>80%) and muscle mass (>70%) following CTX injury. Mechanistically, while similar patterns of early SC activation and proliferation upon injury were observed in engineered muscles with and without BMDMs, a significant decrease in injury-induced apoptosis occurred only in the presence of BMDMs. The importance of preventing apoptosis was further demonstrated by showing that application of caspase inhibitor (Q-VD-OPh) yielded myofiber regrowth and functional recovery post-injury. Gene expression analysis suggested muscle-secreted tumor necrosis factor-α (TNFα) as a potential inducer of apoptosis as common for muscle degeneration in diseases and aging in vivo. Finally, we showed that BMDM incorporation in engineered muscle enhanced its growth, angiogenesis, and function following implantation in the dorsal window chambers in nude mice.
In summary, this thesis describes novel strategies to engineer highly contractile and regenerative skeletal muscle tissues starting from neonatal or adult rat myogenic cells. We find that age-dependent differences of myogenic cells distinctly affect the self-repair capacity but not contractile function of engineered muscle. Adult, but not neonatal, myogenic progenitors appear to require co-culture with other cells, such as bone marrow-derived macrophages, to allow robust muscle regeneration in vitro and rapid vascularization in vivo. Regarding the established roles of immune system cells in the repair of various muscle and non-muscle tissues, we expect that our work will stimulate the future applications of immune cells as pro-regenerative or anti-inflammatory constituents of engineered tissue grafts. Furthermore, we expect that rodent studies in this thesis will inspire successful engineering of biomimetic human muscle tissues for use in regenerative therapy and drug discovery applications.
Resumo:
Performing experiments with transactinide elements demands highly sensitive detection methods due to the extremely low production rates (one-atom-at-a-time conditions). Preseparation with a physical recoil separator is a powerful method to significantly reduce the background in experiments with sufficiently long-lived isotopes (t1/2≥0.5 s). In the last years, the new gas-filled TransActinide Separator and Chemistry Apparatus (TASCA) was installed and successfully commissioned at GSI. Here, we report on the design and performance of a Recoil Transfer Chamber (RTC) for TASCA—an interface to connect various chemistry and counting setups with the separator. Nuclear reaction products recoiling out of the target are separated according to their magnetic rigidity within TASCA, and the wanted products are guided to the focal plane of TASCA. In the focal plane, they pass a thin Mylar window that separates the ∼1 mbar atmosphere in TASCA from the RTC kept at ∼1 bar. The ions are stopped in the RTC and transported by a continuous gas flow from the RTC to the ancillary setup. In this paper, we report on measurements of the transportation yields under various conditions and on the first chemistry experiments at TASCA—an electrochemistry experiment with osmium and an ion exchange experiment with the transactinide element rutherfordium.
Resumo:
A study on a water- ow window installed in a test box is presented. This window is composed of two glass panes separated by a chamber through water ows. The ow of water comes from an isolated tank which contains heat water. In order to fully evaluate the water- ow window performance for different room and window sizes, locations and weather conditions, a mathematical model of the whole box is needed. The proposed model, in which conduction heat transfer mechanism is the only considered, is one dimensional and unsteady based upon test box energy balance. The effect of the heat water tank, which feeds the water- ow window, is included in the model by means of a time delay in the source term. Although some previous work about moving uid chamber has been developed, air was used as heat transfer uid and no uid storage was considered. Finally a comparison between the numerical solution and the obtained experimental data is done.
Resumo:
The aim of the dissertation is to discover the extent to which methodologies and conceptual frameworks used to understand popular culture may also be useful in the attempt to understand contemporary high culture. The dissertation addresses this question through the application of subculture theory to Brisbane’s contemporary chamber music scene, drawing on a detailed case study of the contemporary chamber ensemble Topology and its audiences. The dissertation begins by establishing the logic and necessity of applying cultural studies methodologies to contemporary high culture. This argument is supported by a discussion of the conceptual relationships between cultural studies, high culture, and popular culture, and the methodological consequences of these relationships. In Chapter 2, a brief overview of interdisciplinary approaches to music reveals the central importance of subculture theory, and a detailed survey of the history of cultural studies research into music subcultures follows. Five investigative themes are identified as being crucial to all forms of contemporary subculture theory: the symbolic; the spatial; the social; the temporal; the ideological and political. Chapters 3 and 4 present the findings of the case study as they relate to these five investigative themes of contemporary subculture theory. Chapter 5 synthesises the findings of the previous two chapters, and argues that while participation in contemporary chamber music is not as intense or pervasive as is the case with the most researched street-based youth subcultures, it is nevertheless possible to describe Brisbane’s contemporary chamber music scene as a subculture. The dissertation closes by reflecting on the ways in which the subcultural analysis of contemporary chamber music has yielded some insight into the lived practices of high culture in contemporary urban contexts.
Resumo:
The Restrung New Chamber Festival was a practice-led research project which explored the intricacies of musical relationships. Specifically, it investigated the relationships between new music ensembles and pop-oriented bands inspired by the new music genre. The festival, held at the Brisbane Powerhouse (28 February-2 March 2009) comprised 17 diverse groups including the Brodsky Quartet, Topology, Wood, Fourplay and CODA. Restrung used a new and distinctive model which presented new music and syncretic musical genres within an immersive environment. Restrung brought together approaches used in both contemporary classical and popular music festivals, using musical, visual and spatial aspects to engage audiences. Interactivity was encouraged through video and sound installations, workshops and forums. This paper will investigate some of the issues surrounding the conception and design of the Restrung model, within the context of an overview of European new music trends. It includes a discussion of curating such an event in a musically sensitive and effective way, and approaches to identifying new and receptive audiences. As a guide to programming Restrung, I formulated a working definition of new music, further developed by interviews with specialists in Australia and Europe, and this will be outlined below.