999 resultados para weibull simulation
Resumo:
The main objective of this master’s thesis is to examine if Weibull analysis is suitable method for warranty forecasting in the Case Company. The Case Company has used Reliasoft’s Weibull++ software, which is basing on the Weibull method, but the Company has noticed that the analysis has not given right results. This study was conducted making Weibull simulations in different profit centers of the Case Company and then comparing actual cost and forecasted cost. Simula-tions were made using different time frames and two methods for determining future deliveries. The first sub objective is to examine, which parameters of simulations will give the best result to each profit center. The second sub objective of this study is to create a simple control model for following forecasted costs and actual realized costs. The third sub objective is to document all Qlikview-parameters of profit centers. This study is a constructive research, and solutions for company’s problems are figured out in this master’s thesis. In the theory parts were introduced quality issues, for example; what is quality, quality costing and cost of poor quality. Quality is one of the major aspects in the Case Company, so understand-ing the link between quality and warranty forecasting is important. Warranty management was also introduced and other different tools for warranty forecasting. The Weibull method and its mathematical properties and reliability engineering were introduced. The main results of this master’s thesis are that the Weibull analysis forecasted too high costs, when calculating provision. Although, some forecasted values of profit centers were lower than actual values, the method works better for planning purposes. One of the reasons is that quality improving or alternatively quality decreasing is not showing in the results of the analysis in the short run. The other reason for too high values is that the products of the Case Company are com-plex and analyses were made in the profit center-level. The Weibull method was developed for standard products, but products of the Case Company consists of many complex components. According to the theory, this method was developed for homogeneous-data. So the most im-portant notification is that the analysis should be made in the product level, not the profit center level, when the data is more homogeneous.
Resumo:
This study investigates a theoretical model where a longitudinal process, that is a stationary Markov-Chain, and a Weibull survival process share a bivariate random effect. Furthermore, a Quality-of-Life adjusted survival is calculated as the weighted sum of survival time. Theoretical values of population mean adjusted survival of the described model are computed numerically. The parameters of the bivariate random effect do significantly affect theoretical values of population mean. Maximum-Likelihood and Bayesian methods are applied on simulated data to estimate the model parameters. Based on the parameter estimates, predicated population mean adjusted survival can then be calculated numerically and compared with the theoretical values. Bayesian method and Maximum-Likelihood method provide parameter estimations and population mean prediction with comparable accuracy; however Bayesian method suffers from poor convergence due to autocorrelation and inter-variable correlation. ^
Resumo:
A numerical method is developed to simulate complex two-dimensional crack propagation in quasi-brittle materials considering random heterogeneous fracture properties. Potential cracks are represented by pre-inserted cohesive elements with tension and shear softening constitutive laws modelled by spatially varying Weibull random fields. Monte Carlo simulations of a concrete specimen under uni-axial tension were carried out with extensive investigation of the effects of important numerical algorithms and material properties on numerical efficiency and stability, crack propagation processes and load-carrying capacities. It was found that the homogeneous model led to incorrect crack patterns and load–displacement curves with strong mesh-dependence, whereas the heterogeneous model predicted realistic, complicated fracture processes and load-carrying capacity of little mesh-dependence. Increasing the variance of the tensile strength random fields with increased heterogeneity led to reduction in the mean peak load and increase in the standard deviation. The developed method provides a simple but effective tool for assessment of structural reliability and calculation of characteristic material strength for structural design.
Resumo:
In dieser Arbeit werden mithilfe der Likelihood-Tiefen, eingeführt von Mizera und Müller (2004), (ausreißer-)robuste Schätzfunktionen und Tests für den unbekannten Parameter einer stetigen Dichtefunktion entwickelt. Die entwickelten Verfahren werden dann auf drei verschiedene Verteilungen angewandt. Für eindimensionale Parameter wird die Likelihood-Tiefe eines Parameters im Datensatz als das Minimum aus dem Anteil der Daten, für die die Ableitung der Loglikelihood-Funktion nach dem Parameter nicht negativ ist, und dem Anteil der Daten, für die diese Ableitung nicht positiv ist, berechnet. Damit hat der Parameter die größte Tiefe, für den beide Anzahlen gleich groß sind. Dieser wird zunächst als Schätzer gewählt, da die Likelihood-Tiefe ein Maß dafür sein soll, wie gut ein Parameter zum Datensatz passt. Asymptotisch hat der Parameter die größte Tiefe, für den die Wahrscheinlichkeit, dass für eine Beobachtung die Ableitung der Loglikelihood-Funktion nach dem Parameter nicht negativ ist, gleich einhalb ist. Wenn dies für den zu Grunde liegenden Parameter nicht der Fall ist, ist der Schätzer basierend auf der Likelihood-Tiefe verfälscht. In dieser Arbeit wird gezeigt, wie diese Verfälschung korrigiert werden kann sodass die korrigierten Schätzer konsistente Schätzungen bilden. Zur Entwicklung von Tests für den Parameter, wird die von Müller (2005) entwickelte Simplex Likelihood-Tiefe, die eine U-Statistik ist, benutzt. Es zeigt sich, dass für dieselben Verteilungen, für die die Likelihood-Tiefe verfälschte Schätzer liefert, die Simplex Likelihood-Tiefe eine unverfälschte U-Statistik ist. Damit ist insbesondere die asymptotische Verteilung bekannt und es lassen sich Tests für verschiedene Hypothesen formulieren. Die Verschiebung in der Tiefe führt aber für einige Hypothesen zu einer schlechten Güte des zugehörigen Tests. Es werden daher korrigierte Tests eingeführt und Voraussetzungen angegeben, unter denen diese dann konsistent sind. Die Arbeit besteht aus zwei Teilen. Im ersten Teil der Arbeit wird die allgemeine Theorie über die Schätzfunktionen und Tests dargestellt und zudem deren jeweiligen Konsistenz gezeigt. Im zweiten Teil wird die Theorie auf drei verschiedene Verteilungen angewandt: Die Weibull-Verteilung, die Gauß- und die Gumbel-Copula. Damit wird gezeigt, wie die Verfahren des ersten Teils genutzt werden können, um (robuste) konsistente Schätzfunktionen und Tests für den unbekannten Parameter der Verteilung herzuleiten. Insgesamt zeigt sich, dass für die drei Verteilungen mithilfe der Likelihood-Tiefen robuste Schätzfunktionen und Tests gefunden werden können. In unverfälschten Daten sind vorhandene Standardmethoden zum Teil überlegen, jedoch zeigt sich der Vorteil der neuen Methoden in kontaminierten Daten und Daten mit Ausreißern.
Resumo:
Heterogeneity in lifetime data may be modelled by multiplying an individual's hazard by an unobserved frailty. We test for the presence of frailty of this kind in univariate and bivariate data with Weibull distributed lifetimes, using statistics based on the ordered Cox-Snell residuals from the null model of no frailty. The form of the statistics is suggested by outlier testing in the gamma distribution. We find through simulation that the sum of the k largest or k smallest order statistics, for suitably chosen k , provides a powerful test when the frailty distribution is assumed to be gamma or positive stable, respectively. We provide recommended values of k for sample sizes up to 100 and simple formulae for estimated critical values for tests at the 5% level.
Resumo:
We obtain adjustments to the profile likelihood function in Weibull regression models with and without censoring. Specifically, we consider two different modified profile likelihoods: (i) the one proposed by Cox and Reid [Cox, D.R. and Reid, N., 1987, Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society B, 49, 1-39.], and (ii) an approximation to the one proposed by Barndorff-Nielsen [Barndorff-Nielsen, O.E., 1983, On a formula for the distribution of the maximum likelihood estimator. Biometrika, 70, 343-365.], the approximation having been obtained using the results by Fraser and Reid [Fraser, D.A.S. and Reid, N., 1995, Ancillaries and third-order significance. Utilitas Mathematica, 47, 33-53.] and by Fraser et al. [Fraser, D.A.S., Reid, N. and Wu, J., 1999, A simple formula for tail probabilities for frequentist and Bayesian inference. Biometrika, 86, 655-661.]. We focus on point estimation and likelihood ratio tests on the shape parameter in the class of Weibull regression models. We derive some distributional properties of the different maximum likelihood estimators and likelihood ratio tests. The numerical evidence presented in the paper favors the approximation to Barndorff-Nielsen`s adjustment.
Resumo:
In survival analysis, the response is usually the time until the occurrence of an event of interest, called failure time. The main characteristic of survival data is the presence of censoring which is a partial observation of response. Associated with this information, some models occupy an important position by properly fit several practical situations, among which we can mention the Weibull model. Marshall-Olkin extended form distributions other a basic generalization that enables greater exibility in adjusting lifetime data. This paper presents a simulation study that compares the gradient test and the likelihood ratio test using the Marshall-Olkin extended form Weibull distribution. As a result, there is only a small advantage for the likelihood ratio test
Resumo:
Purpose - The purpose of this paper is to present designs for an accelerated life test (ALT). Design/methodology/approach - Bayesian methods and simulation Monte Carlo Markov Chain (MCMC) methods were used. Findings - In the paper a Bayesian method based on MCMC for ALT under EW distribution (for life time) and Arrhenius models (relating the stress variable and parameters) was proposed. The paper can conclude that it is a reasonable alternative to the classical statistical methods since the implementation of the proposed method is simple, not requiring advanced computational understanding and inferences on the parameters can be made easily. By the predictive density of a future observation, a procedure was developed to plan ALT and also to verify if the conformance fraction of the manufactured process reaches some desired level of quality. This procedure is useful for statistical process control in many industrial applications. Research limitations/implications - The results may be applied in a semiconductor manufacturer. Originality/value - The Exponentiated-Weibull-Arrhenius model has never before been used to plan an ALT. © Emerald Group Publishing Limited.
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Truncated distributions of the exponential family have great influence in the simulation models. This paper discusses the truncated Weibull distribution specifically. The truncation of the distribution is achieved by the Maximum Likelihood Estimation method or combined with the expectation and variance expressions. After the fitting of distribution, the goodness-of-fit tests (the Chi-Square test and the Kolmogorov-Smirnov test) are executed to rule out the rejected hypotheses. Finally the distributions are integrated in various simulation models, e. g. shipment consolidation model, to compare the influence of truncated and original versions of Weibull distribution on the model.
Resumo:
Sizes and power of selected two-sample tests of the equality of survival distributions are compared by simulation for small samples from unequally, randomly-censored exponential distributions. The tests investigated include parametric tests (F, Score, Likelihood, Asymptotic), logrank tests (Mantel, Peto-Peto), and Wilcoxon-Type tests (Gehan, Prentice). Equal sized samples, n = 18, 16, 32 with 1000 (size) and 500 (power) simulation trials, are compared for 16 combinations of the censoring proportions 0%, 20%, 40%, and 60%. For n = 8 and 16, the Asymptotic, Peto-Peto, and Wilcoxon tests perform at nominal 5% size expectations, but the F, Score and Mantel tests exceeded 5% size confidence limits for 1/3 of the censoring combinations. For n = 32, all tests showed proper size, with the Peto-Peto test most conservative in the presence of unequal censoring. Powers of all tests are compared for exponential hazard ratios of 1.4 and 2.0. There is little difference in power characteristics of the tests within the classes of tests considered. The Mantel test showed 90% to 95% power efficiency relative to parametric tests. Wilcoxon-type tests have the lowest relative power but are robust to differential censoring patterns. A modified Peto-Peto test shows power comparable to the Mantel test. For n = 32, a specific Weibull-exponential comparison of crossing survival curves suggests that the relative powers of logrank and Wilcoxon-type tests are dependent on the scale parameter of the Weibull distribution. Wilcoxon-type tests appear more powerful than logrank tests in the case of late-crossing and less powerful for early-crossing survival curves. Guidelines for the appropriate selection of two-sample tests are given. ^
Resumo:
The estimation of P(S-n > u) by simulation, where S, is the sum of independent. identically distributed random varibles Y-1,..., Y-n, is of importance in many applications. We propose two simulation estimators based upon the identity P(S-n > u) = nP(S, > u, M-n = Y-n), where M-n = max(Y-1,..., Y-n). One estimator uses importance sampling (for Y-n only), and the other uses conditional Monte Carlo conditioning upon Y1,..., Yn-1. Properties of the relative error of the estimators are derived and a numerical study given in terms of the M/G/1 queue in which n is replaced by an independent geometric random variable N. The conclusion is that the new estimators compare extremely favorably with previous ones. In particular, the conditional Monte Carlo estimator is the first heavy-tailed example of an estimator with bounded relative error. Further improvements are obtained in the random-N case, by incorporating control variates and stratification techniques into the new estimation procedures.
Resumo:
2000 Mathematics Subject Classification: 62F25, 62F03.
Resumo:
2000 Mathematics Subject Classification: 62E16, 65C05, 65C20.