992 resultados para tri-gate transistor structure
Resumo:
The semiconductor industry's urge towards faster, smaller and cheaper integrated circuits has lead the industry to smaller node devices. The integrated circuits that are now under volume production belong to 22 nm and 14 nm technology nodes. In 2007 the 45 nm technology came with the revolutionary high- /metal gate structure. 22 nm technology utilizes fully depleted tri-gate transistor structure. The 14 nm technology is a continuation of the 22 nm technology. Intel is using second generation tri-gate technology in 14 nm devices. After 14 nm, the semiconductor industry is expected to continue the scaling with 10 nm devices followed by 7 nm. Recently, IBM has announced successful production of 7 nm node test chips. This is the fashion how nanoelectronics industry is proceeding with its scaling trend. For the present node of technologies selective deposition and selective removal of the materials are required. Atomic layer deposition and the atomic layer etching are the respective techniques used for selective deposition and selective removal. Atomic layer deposition still remains as a futuristic manufacturing approach that deposits materials and lms in exact places. In addition to the nano/microelectronics industry, ALD is also widening its application areas and acceptance. The usage of ALD equipments in industry exhibits a diversi cation trend. With this trend, large area, batch processing, particle ALD and plasma enhanced like ALD equipments are becoming prominent in industrial applications. In this work, the development of an atomic layer deposition tool with microwave plasma capability is described, which is a ordable even for lightly funded research labs.
Resumo:
The coarsening of the nanoporous structure developed in undoped and 3% Sb-doped SnO2 sol-gel dip-coated films deposited on a mica substrate was studied by time-resolved small-angle x-ray scattering (SAXS) during in situ isothermal treatments at 450 and 650 degrees C. The time dependence of the structure function derived from the experimental SAXS data is in reasonable agreement with the predictions of the statistical theory of dynamical scaling, thus suggesting that the coarsening process in the studied nanoporous structures exhibits dynamical self-similar properties. The kinetic exponents of the power time dependence of the characteristic scaling length of undoped SnO2 and 3% Sb-doped SnO2 films are similar (alpha approximate to 0.09), this value being invariant with respect to the firing temperature. In the case of undoped SnO2 films, another kinetic exponent, alpha('), corresponding to the maximum of the structure function was determined to be approximately equal to three times the value of the exponent alpha, as expected for the random tridimensional coarsening process in the dynamical scaling regime. Instead, for 3% Sb-doped SnO2 films fired at 650 degrees C, we have determined that alpha(')approximate to 2 alpha, thus suggesting a bidimensional coarsening of the porous structure. The analyses of the dynamical scaling functions and their asymptotic behavior at high q (q being the modulus of the scattering vector) provided additional evidence for the two-dimensional features of the pore structure of 3% Sb-doped SnO2 films. The presented experimental results support the hypotheses of the validity of the dynamic scaling concept to describe the coarsening process in anisotropic nanoporous systems.
Resumo:
This paper presents the evaluation of the analog properties of nMOS junctionless (JL) multigate transistors, comparing their performance with those exhibited by inversion-mode (IM) trigate devices of similar dimensions. The study has been performed for devices operating in saturation as single-transistor amplifiers, and we have considered the dependence of the analog properties on fin width W(fin) and temperature T. Furthermore, this paper aims at providing a physical insight into the analog parameters of JL transistors. For that, in addition to device characterization, 3-D device simulations were performed. It is shown that, depending on gate voltage, JL devices can present both larger Early voltage V(EA) and larger intrinsic voltage gain A(V) than IM devices of similar dimensions. In addition, V(EA) and A(V) are always improved in JL devices when the temperature is increased, whereas they present a maximum value around room temperature for IM transistors.
Resumo:
Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base-emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions.
Resumo:
In this work we have studied the radiation effects on MOSFET electronic devices. The integrated circuits were exposed to 10 key X-ray radiation and 2.6 MeV energy proton beam. We have irradiated MOSFET devices with two different geometries: rectangular-gate transistor and circular-gate transistor. We have observed the cumulative dose provokes shifts on the threshold voltage and increases or decreases the transistor's off-state and leakage current. The position of the trapped charges in modern CMOS technology devices depends on radiation type, dose rate, total dose, applied bias and is a function of device geometry. We concluded the circular-gate transistor is more tolerant to radiation than the rectangular-gate transistor. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this work, the impact of global and/or local strain engineering techniques on tri-gate p- and nMuGFETs performance is experimentally evaluated. Multiple gate structures were analyzed through basic and analog performance parameters for four different splits processed with different strain-engineering techniques (unstrained, uniaxial, biaxial and uniaxial+biaxial stress). While n-channel devices with narrow fins present a worse analog behavior, biaxial stress promotes the electron mobility for larger devices increasing the voltage gain. Besides the voltage gain, the transconductance, output conductance and Early Voltage are also evaluated. Although pMuGFETs are less affected by the strain engineering, they present better analog behavior for all studied devices.
Resumo:
Organic semiconductor technology has attracted considerable research interest in view of its great promise for large area, lightweight, and flexible electronics applications. Owing to their advantages in processing and unique physical properties, organic semiconductors can bring exciting new opportunities for broad-impact applications requiring large area coverage, mechanical flexibility, low-temperature processing, and low cost. In order to achieve highly flexible device architecture it is crucial to understand on a microscopic scale how mechanical deformation affects the electrical performance of organic thin film devices. Towards this aim, I established in this thesis the experimental technique of Kelvin Probe Force Microscopy (KPFM) as a tool to investigate the morphology and the surface potential of organic semiconducting thin films under mechanical strain. KPFM has been employed to investigate the strain response of two different Organic Thin Film Transistor with active layer made by 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-Pentacene), and Poly(3-hexylthiophene-2,5-diyl) (P3HT). The results show that this technique allows to investigate on a microscopic scale failure of flexible TFT with this kind of materials during bending. I find that the abrupt reduction of TIPS-pentacene device performance at critical bending radii is related to the formation of nano-cracks in the microcrystal morphology, easily identified due to the abrupt variation in surface potential caused by local increase in resistance. Numerical simulation of the bending mechanics of the transistor structure further identifies the mechanical strain exerted on the TIPS-pentacene micro-crystals as the fundamental origin of fracture. Instead for P3HT based transistors no significant reduction in electrical performance is observed during bending. This finding is attributed to the amorphous nature of the polymer giving rise to an elastic response without the occurrence of crack formation.
Resumo:
There is an immediate need for identification of new antifungal targets in opportunistic pathogenic fungi like Candida albicans. In the past, efforts have focused on synthesis of chitin and glucan, which confer mechanical strength and rigidity upon the cell wall. This paper describes the molecular analysis of CaMNT1, a gene involved in synthesis of mannoproteins, the third major class of macromolecule found in the cell wall. CaMNT1 encodes an α-1,2-mannosyl transferase, which adds the second mannose residue in a tri-mannose oligosaccharide structure which represents O-linked mannan in C. albicans. The deduced amino acid sequence suggests that CaMnt1p is a type II membrane protein residing in a medial Golgi compartment. The absence of CaMnt1p reduced the ability of C. albicans cells to adhere to each other, to human buccal epithelial cells, and to rat vaginal epithelial cells. Both heterozygous and homozygous Camnt1 null mutants of C. albicans showed strong attenuation of virulence in guinea pig and mouse models of systemic candidosis, which, in guinea pigs, could be attributed to a decreased ability to reach and/or adhere internal organs. Therefore, correct CaMnt1p-mediated O-linked mannosylation of proteins is critical for adhesion and virulence of C. albicans.
Resumo:
This thesis describes a collection of studies into the electrical response of a III-V MOS stack comprising metal/GaGdO/GaAs layers as a function of fabrication process variables and the findings of those studies. As a result of this work, areas of improvement in the gate process module of a III-V heterostructure MOSFET were identified. Compared to traditional bulk silicon MOSFET design, one featuring a III-V channel heterostructure with a high-dielectric-constant oxide as the gate insulator provides numerous benefits, for example: the insulator can be made thicker for the same capacitance, the operating voltage can be made lower for the same current output, and improved output characteristics can be achieved without reducing the channel length further. It is known that transistors composed of III-V materials are most susceptible to damage induced by radiation and plasma processing. These devices utilise sub-10 nm gate dielectric films, which are prone to contamination, degradation and damage. Therefore, throughout the course of this work, process damage and contamination issues, as well as various techniques to mitigate or prevent those have been investigated through comparative studies of III-V MOS capacitors and transistors comprising various forms of metal gates, various thicknesses of GaGdO dielectric, and a number of GaAs-based semiconductor layer structures. Transistors which were fabricated before this work commenced, showed problems with threshold voltage control. Specifically, MOSFETs designed for normally-off (VTH > 0) operation exhibited below-zero threshold voltages. With the results obtained during this work, it was possible to gain an understanding of why the transistor threshold voltage shifts as the gate length decreases and of what pulls the threshold voltage downwards preventing normally-off device operation. Two main culprits for the negative VTH shift were found. The first was radiation damage induced by the gate metal deposition process, which can be prevented by slowing down the deposition rate. The second was the layer of gold added on top of platinum in the gate metal stack which reduces the effective work function of the whole gate due to its electronegativity properties. Since the device was designed for a platinum-only gate, this could explain the below zero VTH. This could be prevented either by using a platinum-only gate, or by matching the layer structure design and the actual gate metal used for the future devices. Post-metallisation thermal anneal was shown to mitigate both these effects. However, if post-metallisation annealing is used, care should be taken to ensure it is performed before the ohmic contacts are formed as the thermal treatment was shown to degrade the source/drain contacts. In addition, the programme of studies this thesis describes, also found that if the gate contact is deposited before the source/drain contacts, it causes a shift in threshold voltage towards negative values as the gate length decreases, because the ohmic contact anneal process affects the properties of the underlying material differently depending on whether it is covered with the gate metal or not. In terms of surface contamination; this work found that it causes device-to-device parameter variation, and a plasma clean is therefore essential. This work also demonstrated that the parasitic capacitances in the system, namely the contact periphery dependent gate-ohmic capacitance, plays a significant role in the total gate capacitance. This is true to such an extent that reducing the distance between the gate and the source/drain ohmic contacts in the device would help with shifting the threshold voltages closely towards the designed values. The findings made available by the collection of experiments performed for this work have two major applications. Firstly, these findings provide useful data in the study of the possible phenomena taking place inside the metal/GaGdO/GaAs layers and interfaces as the result of chemical processes applied to it. In addition, these findings allow recommendations as to how to best approach fabrication of devices utilising these layers.
Resumo:
Report for the scientific sojourn carried out at the Université Catholique de Louvain, Belgium, from March until June 2007. In the first part, the impact of important geometrical parameters such as source and drain thickness, fin spacing, spacer width, etc. on the parasitic fringing capacitance component of multiple-gate field-effect transistors (MuGFET) is deeply analyzed using finite element simulations. Several architectures such as single gate, FinFETs (double gate), triple-gate represented by Pi-gate MOSFETs are simulated and compared in terms of channel and fringing capacitances for the same occupied die area. Simulations highlight the great impact of diminishing the spacing between fins for MuGFETs and the trade-off between the reduction of parasitic source and drain resistances and the increase of fringing capacitances when Selective Epitaxial Growth (SEG) technology is introduced. The impact of these technological solutions on the transistor cut-off frequencies is also discussed. The second part deals with the study of the effect of the volume inversion (VI) on the capacitances of undoped Double-Gate (DG) MOSFETs. For that purpose, we present simulation results for the capacitances of undoped DG MOSFETs using an explicit and analytical compact model. It monstrates that the transition from volume inversion regime to dual gate behaviour is well simulated. The model shows an accurate dependence on the silicon layer thickness,consistent withtwo dimensional numerical simulations, for both thin and thick silicon films. Whereas the current drive and transconductance are enhanced in volume inversion regime, our results show thatintrinsic capacitances present higher values as well, which may limit the high speed (delay time) behaviour of DG MOSFETs under volume inversion regime.
Resumo:
L’intensification des pratiques agricoles a été identifiée comme cause majeure du déclin de la biodiversité. Plusieurs études ont documenté l’impact de la fragmentation du paysage naturel et de l’agriculture intensive sur la diversité des espèces, mais très peu ont quantifié le lien entre la structure du paysage et les interactions trophiques, ainsi que les mécanismes d’adaptation des organismes. J’ai étudié un modèle biologique à trois niveaux trophiques composé d’un oiseau hôte, l’hirondelle bicolore Tachycineta bicolor, de mouches ectoparasites du genre Protocalliphora et de guêpes parasitoïdes du genre Nasonia, au travers d’un gradient d’intensification agricole dans le sud du Québec. Le premier objectif était de déterminer l’abondance des espèces de mouches ectoparasites et de leurs guêpes parasitoïdes qui colonisent les nids d’hirondelles dans la zone d’étude. La prévalence de nids infectés par Protocalliphora spp. était de 70,8% en 2008 et 34,6% en 2009. Le pourcentage de nids comprenant des pupes de Protocalliphora parasitées par Nasonia spp. était de 85,3% en 2008 et 67,2% en 2009. Trois espèces de Protocalliphora ont été observées (P. sialia, P. bennetti et P. metallica) ainsi que deux espèces de Nasonia (N. vitripennis et N. giraulti). Il s’agit d’une première mention de P. bennetti et de N. giraulti dans la province de Québec. Mon deuxième objectif était d’évaluer l’impact de l’intensification agricole et de la structure du paysage sur les relations tri-trophiques entre les organismes à l’étude. Les résultats révèlent que les réponses à la structure du paysage de l’hirondelle, de l’ectoparasite et de l’hyperparasite dépendantent de l’échelle spatiale. L’échelle spatiale fonctionnelle à laquelle les espèces répondent le plus varie selon le paramètre du paysage modélisé. Les analyses démontrent que l’intensification des pratiques agricoles entraîne une diminution des populations d’oiseaux, d’ectoparasites et d’hyperparasites. De plus, les populations de Protocalliphora et de Nasonia sont menacées en paysage intensif puisque la dégradation du paysage associée à l’intensification des pratiques agricoles agit directement sur leurs populations et indirectement sur les populations de leurs hôtes. Mon troisième objectif était de caractériser les mécanismes comportementaux permettant aux guêpes de composer avec la variabilité de la structure du paysage et de la qualité des hôtes. Nos résultats révèlent que les femelles Nasonia ajustent la taille de leur ponte en fonction de la taille de la pupe hôte et de l’incidence d’hyperparasitisme. Le seul facteur ayant une influence déterminante sur le ratio sexuel est la proportion de paysage dédié à l’agriculture intensive. Aucune relation n’a été observée entre la structure du paysage et la taille des filles et des fils produits par les femelles Nasonia fondatrices. Ce phénomène est attribué aux comportements d’ajustement de la taille de la ponte et du ratio sexuel. En ajustant ces derniers, minimisant ainsi la compétition entre les membres de leur progéniture, les femelles fondatrices sont capables de maximiser la relation entre la disponibilité des ressources et la valeur sélective de leur progéniture. En conclusion, ce travail souligne l’importance de considérer le contexte spatial des interactions trophiques, puisqu’elles influencent la biodiversité locale et le fonctionnement de l’écosystème.
Resumo:
oxovanadium(V) salicylhydroximate complexes, [VO(SHA)(H2O)]center dot 1.58H(2)O (1) and [V3O3(CSHA)(3) (H2O)(3)]center dot 3CH(3)COCH(3) (2) have been synthesized by reaction of VO43- with N-salicyl hydroxamic acid (SHAHS) and N-(5-chlorosalicyl) hydroxamic acid (CSHAH(3)), respectively, in methanol medium. Compound 1 on reaction with pyridine 2,6-dicarboxylic acid (PyDCH2) yields mononuclear complex [VO(SHAH(2))(PyDC)] (3). Treatment of compound 3 with hydrogen peroxide at low pH (2-3) and low temperature (0-5 degrees C) yields a stable oxoperoxovanadium(V) complex H[VO(O-2)(PyDC)(H2O)]center dot 2.5H(2)O (4). All four complexes (1-4) have been characterized by spectroscopic (IR, UV-Vis, V-51 NMR) and single crystal X-ray analyses. Intermolecular hydrogen bonds link complex 1 into hexanuclear clusters consisting of six {VNO5} octahedra surrounded by twelve {VNO5} octahedra to form an annular ring. While the molecular packing in 2 generates a two-dimensional framework hydrogen bonds involving the solvent acetone molecules, the mononuclear complexes 3 and 4 exhibit three-dimensional supramolecular architecture. The compounds 1 and 2 behave as good catalysts for oxygenation of benzylic, aromatic, carbocyclic and aliphatic hydrocarbons to their corresponding hydroxylated and oxygenated products using H2O2 as terminal oxidant; the process affords very good yield and turnover number. The catalysis work shows that cyclohexane is a very easily oxidizable substrate giving the highest turnover number (TON) while n-hexane and n-heptane show limited yield, longer time involvement and lesser TON than other hydrocarbons. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Three novel mixed bridged trinuclear and one tetranuclear copper(II) complexes of tridentate NNO donor Schiff base ligands [Cu-3(L-1)(2)(mu(LI)-N-3)(2)(CH3OH)(2)(BF2)(2)] (1), [Cu-3(L-1)(2)(mu(LI)-NO3-I kappa O.2 kappa O')(2)] (2), [Cu-3(L-2)(2)(mu(LI)-N-3)(2)(mu-NOI-I kappa O 2 kappa O')(2)] (3) and [Cu-4(L-3)(2)(mu(LI)-N-3)(4)(mu-CH3COO-I kappa O 2 kappa O')(2)] (4) have been synthesized by reaction of the respective tridentate ligands (L-1 = 2[1-(2-dimethylamino-ethylimino)-ethyl]-phenol, L-2 = 2[1-(2-diethylamino-ethylimino)-ethyl]-phenol, L-3 = 2-[1-(2-dimethylamino-ethylimino)-methyl]-phenol) with the corresponding copper(II) salts in the presence of NaN3 The complexes are characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements Complex 1 is composed of two terminal [Cu(L-1)(mu(LI)-N-3)] units connected by a central [Cu(BF4)(2)] unit through nitrogen atoms of end-on azido ligands and a phenoxo oxygen atom of the tridentate ligand The structures of 2 and 3 are very similar, the only difference is that the central unit is [Cu(NO1)(2)] and the nitrate group forms an additional mu-NO3-I kappa O 2 kappa O' bridge between the terminal and central copper atoms In complex 4, the central unit is a di-mu(L1)-N-3 bridged dicopper entity, [Cu-2(mu(L1)-N-3)(2)(CH3COO)(2)] that connects two terminal [Cu(L-3)(mu(L1)-N-3)] units through end-on azido; phenoxo oxygen and mu-CH3COO-1 kappa O center dot 2 kappa O' triple bridges to result in a tetranuclear unit Analyses of variable-temperature magnetic susceptibility data indicates that there is a global weak antiferromagnetic interaction between the copper(II) ions in complexes 1-3, with the exchange parameter J of -9 86, -11 6 and -19 98 cm(-1) for 1-3, respectively In complex 4 theoretical calculations show the presence of an antiferromagnetic coupling in the triple bridging ligands (acetato, phenoxo and azido) while the interaction through the double end-on azido bridging ligand is strongly ferromagnetic.
Resumo:
The structural and electronic properties of perylene diimide liquid crystal PPEEB are studied using ab initio methods based on the density functional theory (I)FT). Using available experimental crystallographic data as a guide, we propose a detailed structural model for the packing of solid PPEEB. We find that due to the localized nature of the band edge wave function, theoretical approaches beyond the standard method, such as hybrid functional (PBE0), are required to correctly characterize the band structure of this material. Moreover, unlike previous assumptions, we observe the formation of hydrogen bonds between the side chains of different molecules, which leads to a dispersion of the energy levels. This result indicates that the side chains of the molecular crystal not only are responsible for its structural conformation but also can be used for tuning the electronic and optical properties of these materials.
Resumo:
We describe the assembly of layer-by-layer films based on the poly(propylene imine) dendrimer (PPID) generation 3 and nickel tetrasulfonated phthalocyanine (NiTsPc) for application as chemically sensitive membranes in sepal alive extended-gate field effect transistor (SEGFET) pH sensors PPID/NiTsPc films wet e adsorbed on quartz, glass. indium tin oxide. or gold (Au)-covered glass substrates Multilayer formation was monitored via UV-vis absorption upon following the increment in the Q-band intensity (615 nm) of NiTsPc The nanostructured membranes were very stable in a pH range of 4-10 and displayed a good sensitivity toward H(+), ca 30 mV/pH for PPID/N(1)TsPc films deposited on Au-covered substrates For films deposited on ITO, the sensitivity was ca 52 4 mV/pH. close to the expected theoretical value for ton-sensitive membranes. The use of chemically stable PPID/NiTsPc films as gate membranes in SEGFETs, as introduced here, may represent an alternative for the fabrication of nanostructured, porous platforms for enzyme immobilization to be used in enzymatic biosensors.