965 resultados para thermophilic bacterium


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent developments in chemical pretreatments of lignocellulosic biomass using polyols as co-solvents (e.g., glycerol and ethylene glycol) at temperatures less than 100 °C may allow the effective use of thermostable and non-thermostable cellulases in situ during the saccharification process. The potential of biomass saccharifying enzymes, endoglucanases (EG) from a thermophilic bacterium (Thermotoga maritima) and a mesophilic fungus (Trichoderma longibrachiatum), to retain their activity in aqueous buffer, acidified glycerol, and acidified ethylene glycol used as co-solvents at pretreatment temperatures at or below 100 °C were examined. The results show that despite its origin, T. longibrachiatum EG (Tl-EG) retained 75% of its activity after exposure to 100 °C for 5 min in aqueous buffer while T. maritima EG (Tm-EG) retained only 5% activity. However, at 90 °C both enzymes retained over 87% of their activity. In acidified (0.1% (w/w) H2SO4) glycerol, Tl-EG retained similar activity (80%) to that obtained in glycerol alone, while Tm-EG retained only 35%. With acidified ethylene glycol under these conditions, both Tl-EG and Tm-EG retained 36% of their activity. The results therefore show that Tl-EG is more stable in both acidified glycerol and ethylene glycol than Tm-EG. A preliminary kinetic study showed that pure glycerol improved the thermal stability of Tl-EG but destabilized Tm-EG, relative to the buffer solution. The half-lives of both Tl-EG and Tm-EG are 4.5 min in acidified glycerol, indicating that the effectiveness of these enzymes under typical pretreatment times of greater than 15 min will be considerably diminished. Attempts have been made to explain the differences in the results obtained between the two enzymes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pectin lyase (Pl) and polygalacturonase (Pg) production by Thermoascus aurantiacus 179-5 was carried out by means of solid-state determination using orange bagasse and wheat bran as a carbon sources. Pg and Pl had optimum activity at pH 5.0 and 10.5 respectively. Maximal activity of the enzymes were determined at 65 °C. Pg was stable in the acidic to neutral pH range and at 60 °C for 1 h. whereas Pl was stable at acidic pH and at 60 °C for 5 h. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis has two items: biofouling and antifouling in paper industry. Biofouling means unwanted microbial accumulation on surfaces causing e.g. disturbances in industrial processes, contamination of medical devices or of water distribution networks. Antifouling focuses on preventing accumulation of the biofilms in undesired places. Deinococcus geothermalis is a pink-pigmented, thermophilic bacterium, and extremely resistant towards radiation, UV-light and desiccation and known as a biofouler of paper machines forming firm and biocide resistant biofilms on the stainless steel surfaces. The compact structure of biofilm microcolonies of D. geothermalis E50051 and the adhesion into abiotic surfaces were investigated by confocal laser scanning microscope combined with carbohydrate specific fluorescently labelled lectins. The extracellular polymeric substance in D. geothermalis microcolonies was found to be a composite of at least five different glycoconjugates contributing to adhesion, functioning as structural elements, putative storages for water, gliding motility and likely also to protection. The adhesion threads that D. geothermalis seems to use to adhere on an abiotic surface and to anchor itself to the neighbouring cells were shown to be protein. Four protein components of type IV pilin were identified. In addition, the lectin staining showed that the adhesion threads were covered with galactose containing glycoconjugates. The threads were not exposed on planktic cells indicating their primary role in adhesion and in biofilm formation. I investigated by quantitative real-time PCR the presence of D. geothermalis in biofilms, deposits, process waters and paper end products from 24 paper and board mills. The primers designed for doing this were targeted to the 16S rRNA gene of D. geothermalis. We found D. geothermalis DNA from 9 machines, in total 16 samples of the 120 mill samples searched for. The total bacterial content varied in those samples between 107 to 3 ×1010 16S rRNA gene copies g-1. The proportion of D. geothermalis in those same samples was minor, 0.03 1.3 % of the total bacterial content. Nevertheless D. geothermalis may endanger paper quality as its DNA was shown in an end product. As an antifouling method towards biofilms we studied the electrochemical polarization. Two novel instruments were designed for this work. The double biofilm analyzer was designed for search for a polarization program that would eradicate D. geothermalis biofilm or from stainless steel under conditions simulating paper mill environment. The Radbox instrument was designed to study the generation of reactive oxygen species during the polarization that was effective in antifouling of D. geothermalis. We found that cathodic character and a pulsed mode of polarization were required to achieve detaching D. geothermalis biofilm from stainless steel. We also found that the efficiency of polarization was good on submerged, and poor on splash area biofilms. By adding oxidative biocides, bromochloro-5,5-dimethylhydantoin, 2,2-dibromo-2-cyanodiacetamide or peracetic acid gave additive value with polarization, being active on splash area biofilms. We showed that the cathodically weighted pulsed polarization that was active in removing D. geothermalis was also effective in generation of reactive oxygen species. It is possible that the antifouling effect relied on the generation of ROS on the polarized steel surfaces. Antifouling method successful towards D. geothermalis that is a tenacious biofouler and possesses a high tolerance to oxidative stressors could be functional also towards other biofoulers and applicable in wet industrial processes elsewhere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A bacteriophage (TØ3) which infects the thermophilic bacterium Bacillus stearothermophilus ATCC 8005 was isolated and characterized. Infection of the bacterium by the bacteriophage was carried out at 60°C, the optimum growth temperature of the host. At 60°C the phage has a latent period of 18 minutes and a burst size of about 200. The phage is comparatively thermostable in broth. The half life of the phage is 400 minutes at 60°C, 120 minutes at 65°C, 40 minutes at 70°C and 12 minutes at 75°C. The activation energy for the heat inactivation of TØ3 is 56,000 cal. The buoyant density of TØ3 in a cesium chloride density gradient is 1.526.

Electron micrographs of TØ3 indicate that the phage has a regular hexagonal shaped head 57 mμ long. The morphology of the head is compatible with icosahedral symmetry. Each edge of the head is 29 mμ long, and there are 6 or 7 subunits along each edge. The tail of TØ3 is 125 mμ long and 10 mμ wide. There are about 30 cross striations that are spaced at 3.9 mμ intervals along the tail.

The DNA of phage TØ3 has a melting temperature of 88.5°C. Heat denatured TØ3 DNA can be extensively annealed in a high ionic strength environment. The buoyant density of TØ3 DNA in a cesium chloride density gradient is 1.695. TØ3 DNA contains: 42.7% guanine plus cytosine, as determined from the melting temperature; 43% guanine plus cytosine, as determined from the buoyant density; and 40.2% guanine plus cytosine, as determined by chromatographic separation and spectrophotometric estimation of the bases. The molecular weight of TØ3 DNA is 16.7 X 106 as determined from the band width of the TØ3 DNA concentration distribution in a cesium chloride density gradient. Electron microscopy of TØ3 DNA revealed a single linear molecule that is 11.7 μ long. This corresponds to a molecular weight of 22.5 X 106.

Heat denatured TØ3 DNA forms two bands in a cesium chloride density gradient, one at a density of 1.707 and the other at a density of 1.715. After the separated bands are mixed and annealed in the centrifuge cell, the renatured TØ3 DNA forms a single band at a density of 1.699. These results indicate that the two complementary strands of TØ3 DNA have different buoyant densities in cesium chloride, presumably because they have different base compositions.

The characteristics of TØ3 are compared with those of other phages. A hypothesis is presented for a relationship between the base composition of one strand of TØ3 DNA and the amino acid composition of the proteins of TØ3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A rosy-pigmented Gram-negative, thermophilic bacterium with an optimum growth temperature of about 55degreesC was isolated from Tengchong hot springs in Yunnan province, China. Its growth scarcely occurred below 40degreesC or above 70degreesC. Phylogenetic and secondary structural analyses of 16S rRNA and DNA-DNA hybridization showed that the organism represented a new species of the genus Meiothermus. This new species could be distinguished easily from other species of the genus Meiothermus by the following phenotypic characteristics: rosy pigment, expanded body, sucrose and maltose were not utilized, gelatin and starch were not hydrolyzed. On the basis of the above data, the name Meiothermus rosaceus sp. nov. was proposed for the species represented by the strain RH9901(T)(CCTCC-AB200291). (C) 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The superoxide dismutase (TfSOD) gene from the extremely thermophilic bacterium Thermus filiformis was cloned and expressed at high levels in mesophilic host. The purified enzyme displayed approximately 25 kDa band in the SDS-PAGE, which was further confirmed as TfSOD by mass spectrometry. The TfSOD was characterized as a cambialistic enzyme once it had enzymatic activity with either manganese or iron as cofactor. TfSOD showed thermostability at 65, 70 and 80°C. The amount of enzyme required to inhibit 50% of pyrogallol autoxidation was 0·41, 0·56 and 13·73 mg at 65, 70 and 80°C, respectively. According to the circular dichroism (CD) spectra data, the secondary structure was progressively lost after increasing the temperature above 70°C. The 3-dimensional model of TfSOD with the predicted cofactor binding corroborated with functional and CD analysis. © 2013 The Society for Applied Microbiology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Das Enterobakterium Escherichia coli sowie das Bodenbakterium Bacillus subtilis können C4-Dicarbonsäuren als aerobe Kohlenstoffquelle zur Energiekonservierung nutzen. Die Regulation des C4-Dicarboxylatstoffwechsels erfolgt in E. coli und B. subtilis durch das Zweikomponentensystem DcuSREc bzw. DctSRBs, bestehend aus einer Sensorkinase und einem Responseregulator. Diese kontrollieren die Expression des C4-Dicarboxylat-Transporters DctA. Der Sensor DcuSEc benötigt für seine Funktion im aeroben Stoffwechsel den Transporter DctA als Cosensor. Für das DctSRBs-System gibt es Hinweise aus genetischen Untersuchungen, dass DctSBs das Bindeprotein DctBBs und möglicherweise auch DctABs als Cosensoren für seine Funktion benötigt. In dieser Arbeit sollte ein direkter Nachweis geführt werden, ob DctBBs und DctABs gemeinsam oder nur jeweils eine der Komponenten als Cosensoren für DctSBs fungieren. Sowohl für DctBBs als auch für DctABs wurde eine direkte Protein-Protein-Interaktion mit DctSBs durch zwei in vivo Interaktionsmethoden nachgewiesen. Beide Methoden beruhen auf der Co-Reinigung der Interaktionspartner mittels Affinitätschromatographie und werden je nach Affinitätssäule als mSPINE oder mHPINE (Membrane Strep/His-Protein INteraction Experiment) bezeichnet. Die Interaktion von DctSBs mit DctBBs wurde zusätzlich über ein bakterielles Two-Hybrid System nachgewiesen. Nach Coexpression mit DctSBs interagieren DctABs und DctBBs in mSPINE-Tests gleichzeitig mit der Sensorkinase. DctSBs bildet somit eine sensorische DctS/DctA/DctB-Einheit in B. subtilis und das Bindeprotein DctBBs agiert nur als Cosensor, nicht aber als Transport-Bindeprotein. Eine direkte Interaktion zwischen dem Transporter DctABs und dem Bindeprotein DctBBs besteht nicht. Transportmessungen belegen, dass der DctA-vermittelte Transport von [14C]-Succinat unabhängig ist von DctBBs. Außerdem wurde untersucht, ob Zweikomponentensysteme aus anderen Bakteriengruppen nach einem ähnlichen Schema wie DcuSREc bzw. DctSRBs aufgebaut sind. Das thermophile Bakterium Geobacillus kaustophilus verfügt über ein DctSR-System, welches auf genetischer Ebene mit einem Transporter des DctA-Typs und einem DctB-Bindeprotein geclustert vorliegt. Die Sensorkinase DctSGk wurde in E. coli heterolog exprimiert und gereinigt. Diese zeigt in einer E. coli DcuS-Insertionsmutanten Komplementation der DcuS-Funktion und besitzt dabei Spezifität für die C4-Dicarbonsäuren Malat, Fumarat, L-Tartrat und Succinat sowie für die C6-Tricarbonsäure Citrat. In Liposomen rekonstituiertes DctSGk zeigt Autokinase-Aktivität nach Zugabe von [γ-33P]-ATP. Der KD-Wert für [γ-33P]-ATP der Kinasedomäne von DctSGk liegt bei 43 μM, die Affinität für ATP ist damit etwa 10-fach höher als in DcuSEc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

3-Isopropylmalate dehydrogenase (IPMDH, E.C. 1.1.1.85) from the thermophilic bacterium Thermus thermophilus HB8 is homologous to IPMDH from the mesophilic Escherichia coli, but has an approximately 17°C higher melting temperature. Its temperature optimum is 22–25°C higher than that of the E. coli enzyme; however, it is hardly active at room temperature. The increased conformational rigidity required to stabilize the thermophilic enzyme against heat denaturation might explain its different temperature-activity profile. Hydrogen/deuterium exchange studies were performed on this thermophilic-mesophilic enzyme pair to compare their conformational flexibilities. It was found that Th. thermophilus IPMDH is significantly more rigid at room temperature than E. coli IPMDH, whereas the enzymes have nearly identical flexibilities under their respective optimal working conditions, suggesting that evolutionary adaptation tends to maintain a “corresponding state” regarding conformational flexibility. These observations confirm that conformational fluctuations necessary for catalytic function are restricted at room temperature in the thermophilic enzyme, suggesting a close relationship between conformational flexibility and enzyme function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Etheno adducts in DNA arise from multiple endogenous and exogenous sources. Of these adducts we have reported that, 1,N6-ethenoadenine (ɛA) and 3,N4-ethenocytosine (ɛC) are removed from DNA by two separate DNA glycosylases. We later confirmed these results by using a gene knockout mouse lacking alkylpurine-DNA-N-glycosylase, which excises ɛA. The present work is directed toward identifying and purifying the human glycosylase activity releasing ɛC. HeLa cells were subjected to multiple steps of column chromatography, including two ɛC-DNA affinity columns, which resulted in >1,000-fold purification. Isolation and renaturation of the protein from SDS/polyacrylamide gel showed that the ɛC activity resides in a 55-kDa polypeptide. This apparent molecular mass is approximately the same as reported for the human G/T mismatch thymine-DNA glycosylase. This latter activity copurified to the final column step and was present in the isolated protein band having ɛC-DNA glycosylase activity. In addition, oligonucleotides containing ɛC⋅G or G/T(U), could compete for ɛC protein binding, further indicating that the ɛC-DNA glycosylase is specific for both types of substrates in recognition. The same substrate specificity for ɛC also was observed in a recombinant G/T mismatch DNA glycosylase from the thermophilic bacterium, Methanobacterium thermoautotrophicum THF.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cytochrome c552 from Hydrogenobacter thermophilus, a thermophilic bacterium, has been converted into a b type cytochrome, after mutagenesis of both heme-binding cysteines to alanine and expression in the cytoplasm of Escherichia coli. The b type variant is less stable, with the guanidine hydrochloride unfolding midpoint occurring at a concentration 2 M lower than for the wild-type protein. The reduction potential is 75 mV lower than that of the recombinant wild-type protein. The heme can be removed from the b type variant, thus generating an apo protein that has, according to circular dichroism spectroscopy, an α-helical content different from that of the holo b type protein. The latter is readily reformed in vitro by addition of heme to the apo protein. This reforming suggests that previously observed assembly of cytochrome c552, which has the typical class I cytochrome c fold, in the E. coli cytoplasm is a consequence of spontaneous thioether bond formation after binding of heme to a prefolded polypeptide. These observations have implications for the general problem of c type cytochrome biogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The protein subunit of RNase P from a thermophilic bacterium, Thermotoga maritima, was overexpressed in and purified from Escherichia coli. The cloned protein was reconstituted with the RNA subunit transcribed in vitro. The temperature optimum of the holoenzyme is near 50°C, with no enzymatic activity at 65°C or above. This finding is in sharp contrast to the optimal growth temperature of T.maritima, which is near 80°C. However, in heterologous reconstitution experiments in vitro with RNase P subunits from other species, we found that the protein subunit from T.maritima was responsible for the comparative thermal stability of such complexes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of various cultural conditions on the composition and nutritional quality of Agaricus bisporus (Lange) Sing. were investigated. Variation in composition was found between different classes of sample. Sampling techniques were standardised to allow for major variations in the different developmental stages and culture ages. Fruitbodies were found to be of low calorific value but contained protein of high digestibility and quality, containing all the essential amino acids required by man. Quantitative estimates of the sulphur-containing amino acids indicated that fruitbodies were deficient in methionine and cysteine. The extent of water application and the supplementation of conventional substrates with various nitrogen-containing substances, influenced yield and composition, establishing the importance of these two factors in the physiology of fruitbodies and cultural management. Storage conditions influenced composition, high temperatures being deleterious to the nutritional value of fruitbodies. Submerged culture techniques were used to investigate the effects of various nutrients on growth and composition of mushroom mycelium, with special reference to the sulphur-containing amino acids. Yield and composition were greatly affected by the carbon:nitrogen ratio of the medium and by the nitrogen source. Significant increases in mycelial methionine content were observed on the addition of inorganic sulphate, the methionine derivative N-acetyl-L-methionine, and L-methionine. A greater increase in methionine content was obtained when the biomass of a thermophilic bacterium isolated from compost was used as a nitrogen source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chlamydiae are obligate intracellular parasites that have evolved specific interactions with their various hosts and host cell types to ensure their successful survival and consequential pathogenesis. The species Chlamydia pneumoniae is ubiquitous, with serological studies showing that most humans are infected at some stage in their lifetime. While most human infections are asymptomatic, C. pneumoniae can cause more-severe respiratory disease and pneumonia and has been linked to chronic diseases such as asthma, atherosclerosis, and even Alzheimer's disease. The widely dispersed animal-adapted C. pneumoniae strains cause an equally wide range of diseases in their hosts. It is emerging that the ability of C. pneumoniae to survive inside its target cells, including evasion of the host's immune attack mechanisms, is linked to the acquisition of key metabolites. Tryptophan and arginine are key checkpoint compounds in this host-parasite battle. Interestingly, the animal strains of C. pneumoniae have a slightly larger genome, enabling them to cope better with metabolite restrictions. It therefore appears that as the evolutionarily more ancient animal strains have evolved to infect humans, they have selectively become more "susceptible" to the levels of key metabolites, such as tryptophan. While this might initially appear to be a weakness, it allows these human C. pneumoniae strains to exquisitely sense host immune attack and respond by rapidly reverting to a persistent phase. During persistence, they reduce their metabolic levels, halting progression of their developmental cycle, waiting until the hostile external conditions have passed before they reemerge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Idiomarina sp. strain 28-8 is an aerobic, Gram-negative, flagellar bacterium isolated from the bodies of ark shells (Scapharca broughtonii) collected from underwater sediments in Gangjin Bay, South Korea. Here, we present the draft genome sequence of Idiomarina sp. 28-8 (2,971,606 bp, with a G+C content of 46.9%), containing 2,795 putative coding sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mode of action of xylanase and beta-glucosidase purified from the culture filtrate of Humicola lanuginosa (Griffon and Maublanc) Bunce on the xylan extracted from sugarcane bagasse and on two commercially available larchwood and oat spelt xylans, on xylooligomers and on arabinoxylooligomers was studied. While larchwood and oat spelt xylans were hydrolyzed to the same extent in 24 h, sugarcane bagasse xylan was hydrolyzed to a lesser extent in the same period. It was found that the rate of hydrolysis of xylooligomers by xylanase increased with increase in chain length, while beta-glucosidase acted rather slowly on all the oligomers tested. Xylanase exhibited predominant ''endo'' action on xylooligomers attacking the xylan chain at random while beta-glucosidase had ''exo'' action, releasing one xylose residue at a time. On arabinoxylooligomers, however, xylanase exhibited ''exo'' action. Thus, it appears that the presence of the arabinose substituent has, in some way, rendered the terminal xylose-xylose linkage more susceptible to xylanase action. It was also observed that even after extensive hydrolysis with both the enzymes, substantial amounts of the parent arabinoxylooligomer remained unhydrolyzed together with the accumulation of arabinoxylobiose. It can therefore be concluded that the presence of the arabinose substituent in the xylan chain results in linkages that offer resistance to both xylanase and beta-glucosidase action.