932 resultados para thermal comfort index
Resumo:
Researchers working with thermal comfort have been using enthalpy to measure thermal energy inside rural facilities, establishing indicator values for many situations of thermal comfort and heat stress. This variable turned out to be helpful in analyzing thermal exchange in livestock systems. The animals are exposed to an environment which is decisive for the thermoregulatory process, and, consequently, the reactions reflect states of thermal comfort or heat stress, the last being responsable for problems of sanity, behavior and productivity. There are researchers using enthalpy as a qualitative indicator of thermal environment of livestock such as poultry, cattle and hogs in tropical regions. This preliminary work intends to check different enthalpy equations using information from classical thermodynamics, and proposes a direct equation as thermal comfort index for livestock systems.
Resumo:
This study is aimed to analyze the thermal comfort in different areas in the city of São Paulo. Two different areas were selected, a densely built (Consolação district) and the other was Fontes do Ipiranga State Park (FISP), an area with only a few buildings and reduced impermeability. A micro-climatic ENVImet was used to simulate the interaction surface-atmosphere in the urban environment. The model resolution is between 0.5 and 10m. This model was developed by Bruse and Fleer (1998) and Bruse (2004). Through the thermal comfort index PMV (predicted mean vote) and MRT (mean radiant temperature) provided by the model, it revealed that the State Park displays PMV values close to comfortable compared to the other studied area. The analysis of thermal comfort index and the Wind flow showed the influence of high buildings in the local climatic environment.
Resumo:
This paper presents a different roof tiles influence study on the thermal comfort for broiler housings. The research was conducted at UNESP`s Experimental Campus at Dracena, state of Sao Paulo, Brazil. Four prototypes in real scale were built, each with an area of 28 m(2). The prototype was covered with roof tiles made of recycled long-life packing material, ceramic tiles, ceramic tiles painted with white coating, and fiber/cement tiles. Temperatures inside the structures were recorded in the winter 2007 over a 90-day period. The results obtained indicated that recycled tile thermal behavior was similar to ceramic tiles. However for the winter period all the prototypes had presented comfort thermal index not in the broilers thermo neutral zone.
Resumo:
This paper presents a distributed predictive control methodology for indoor thermal comfort that optimizes the consumption of a limited shared energy resource using an integrated demand-side management approach that involves a power price auction and an appliance loads allocation scheme. The control objective for each subsystem (house or building) aims to minimize the energy cost while maintaining the indoor temperature inside comfort limits. In a distributed coordinated multi-agent ecosystem, each house or building control agent achieves its objectives while sharing, among them, the available energy through the introduction of particular coupling constraints in their underlying optimization problem. Coordination is maintained by a daily green energy auction bring in a demand-side management approach. Also the implemented distributed MPC algorithm is described and validated with simulation studies.
Resumo:
Among the building materials used in rural facilities, roofs are noteworthy for being largely responsible for thermal comfort, influencing the thermal balance within the shelter. This study aimed to evaluate the influence of roof on the Enthalpy (H), Thermal Load of Radiation (TLR), and Black Globe Temperature and Humidity Index (BGHI) in individual shelters for dairy calves. The design was completely randomized with three treatments: Z - zinc tile, AC - asbestos-cement tile and ACW - asbestos-cement tile painted white on the upper side. The averages were compared by the Scott Knott test at 1% probability. The results showed no statistical difference between treatments (P<0.01) and the external environment for H. For TLR, there was statistical difference among all treatments, where ACW showed the lowest TLR, 489.28 W m-2, followed by AC with 506.72 W m-2 and Z with the highest TLR, 523.55 W m-2. For BGHI, the lowest values were observed for ACW (76.8) and AC (77.4), differing significantly from Z, which obtained the highest value (81.6). The tiles with white paint on the upper side promoted the lowest TLR and the lowest BGHI, favoring the thermal environment in the shelter.
Resumo:
In most of Brazilian pig farms, the environmental acclimatization systems run manually. For night and early morning periods, this practice isn't appropriate, because, in general, there are not employees available to run these manual systems. This research aimed to compare the bioclimatic profile of two differently constructed facilities to the external environment, considering the period from 6 p.m. to 6 a.m. during the spring, in order to show that night and early morning temperatures do not coincides with growing pig's thermoneutral zone. For this reason, acclimatization must be also carried out at these periods. It was analyzed the dry bulb temperature, relative air humidity, temperature-humidity index (THI) and enthalpy data of the sheds and external areas. Under the studied conditions, it was possible to conclude that the constructively appropriate shed appeared to be less influenced by the external environment, allowing better thermal control for growing pigs. Further research must be conducted to verify if automatic cooling systems is needed during night and early morning.
Resumo:
The research was developed to evaluate the use of different types of roofing materials regularly used in poultry houses. Measurements of thermal comfort were made through the use of techniques such as the Black Globe and Humidity Index (BGHI), the Thermal Heat Load (THL) and Enthalpy (H). Conducted in the State University of Goiás, during the months of April and May, 2011, the experiment was composed of five different treatments: AC - Asbestos cement tiles, BA -Bamboo tiles, BAP - Bamboo tiles painted in white, FB -Vegetable fiber tiles and bitumen, FBP -Vegetable fiber tiles and bitumen painted in white. The experiment consisted in 15 repetitions, which were considered the different days of measurements taken. Throughout the studied period, the time of the day considered the least comfortable was the one observed at 2:00pm, and the coverage of vegetable fiber and bitumen showed the highest value of BGHI (84.1) when compared to other types of coverage, characterizing a situation of lower thermal comfort, and no difference was found for THL and H on treatments in the studied region.
Resumo:
Natural-ventilation potential (NVP) value can provide the designers significant information to properly design and arrange natural ventilation strategy at the preliminary or conceptual stage of ventilation and building design. Based on the previous study by Yang et al. [Investigation potential of natural driving forces for ventilation in four major cities in China. Building and Environment 2005;40:739–46], we developed a revised model to estimate the potential for natural ventilation considering both thermal comfort and IAQ issues for buildings in China. It differs from the previous one by Yang et al. in two predominant aspects: (1) indoor air temperature varies synchronously with the outdoor air temperature rather than staying at a constant value as assumed by Yang et al. This would recover the real characteristic of natural ventilation, (2) thermal comfort evaluation index is integrated into the model and thus the NVP can be more reasonably predicted. By adopting the same input parameters, the NVP values are obtained and compared with the early work of Yang et al. for a single building in four representative cities which are located in different climates, i.e., Urumqi in severe cold regions, Beijing in cold regions, Shanghai in hot summer and cold winter regions and Guangzhou in hot summer and warm winter regions of China. Our outcome shows that Guangzhou has the highest and best yearly natural-ventilation potential, followed by Shanghai, Beijing and Urumqi, which is quite distinct from that of Yang et al. From the analysis, it is clear that our model evaluates the NVP values more consistently with the outdoor climate data and thus reveals the true value of NVP.
Resumo:
This paper aims to critically examine the application of Predicted Mean Vote (PMV) in an air-conditioned environment in the hot-humid climate region. Experimental studies have been conducted in a climate chamber in Chongqing, China, from 2008 to 2010. A total of 440 thermal responses from participants were obtained. Data analysis reveals that the PMV overestimates occupants' mean thermal sensation in the warm environment (PMV > 0) with a mean bias of 0.296 in accordance with the ASHRAE thermal sensation scales. The Bland–Altman method has been applied to assess the agreement of the PMV and Actual Mean Vote (AMV) and reveals a lack of agreement between them. It is identified that habituation due to the past thermal experience of a long-term living in a specific region could stimulate psychological adaptation. The psychological adaptation can neutralize occupants’ actual thermal sensation by moderating the thermal sensibility of the skin. A thermal sensation empirical model and a PMV-revised index are introduced for air-conditioned indoor environments in hot-humid regions. As a result of habituation, the upper limit effective thermal comfort temperature SET* can be increased by 1.6 °C in a warm season based on the existing international standard. As a result, a great potential for energy saving from the air-conditioning system in summer could be achieved.
Resumo:
Dentre os materiais de construção utilizados nas instalações rurais, merecem destaque as coberturas, pois são grandes responsáveis pelo conforto térmico, influenciando no balanço térmico no interior das instalações. Este trabalho objetivou avaliar a influência das coberturas sobre a entalpia (H), Carga Térmica Radiante (CTR) e no Índice de Temperatura de Globo Negro e Umidade (ITGU), em abrigos individuais para bezerros leiteiros. O delineamento foi o inteiramente casualizado com três tratamentos: Z - telha de zinco; CA - telha de cimento amianto, e CAB - telha de cimento amianto pintada de branco na face superior. As médias foram comparadas pelo teste de Scott Knott, a 1% de probabilidade. Os resultados mostraram que não houve diferença estatística entre os tratamentos (P<0,01) e o ambiente externo, para a H. Para a CTR, houve diferença estatística entre todos os tratamentos, em que CAB demonstrou menor CTR, 489,28 W m-², seguido do tratamento CA, 506,72 W m-², e Z com maior valor de CTR, 523,55 W m-². Para o ITGU, observaram-se menores valores para CAB (76,8) e CA (77,4), diferindo-se, significativamente do Z, que obteve maior valor (81,6). As telhas com pintura branca em sua face superior promoveram menor CTR e menor ITGU, favorecendo o ambiente térmico da instalação.
Resumo:
Esta pesquisa foi conduzida com o objetivo de avaliar diferentes tipos de coberturas em instalações para aves, por meio do Índice de Temperatura de Globo Negro e Umidade (ITGU), Carga Térmica de Radiação (CTR) e Entalpia (H). O experimento foi conduzido na Universidade Estadual de Goiás, entre os meses de abril e maio de 2011, sendo composto por cinco tratamentos (coberturas): CA -Telha de cimento-amianto; BA -Telha de bambu; BAP -Telha de bambu pintada de branco; FB -Telha de fibra vegetal e betume; FBP -Telha de fibra vegetal e betume pintada de branco, com 15 repetições, sendo as repetições os dias de medição. Dentre os horários estudados, o considerado menos confortável foi às 14h, sendo que a cobertura de fibra vegetal e betume foi a que apresentou maior valor de ITGU (84,1) quando comparada às demais coberturas, caracterizando uma situação de menor conforto térmico, não sendo observada diferença para CTR e H entre os tratamentos na região estudada.
Resumo:
This study aims to analyze the thermal comfort in urban areas for different land uses. The ENVImet microclimatic model has been used for urban boundary layer simulation, providing the following thermal comfort indexes: PMV (Predicted Mean Vote) and PPD (Predicted Percentage of Dissatisfaction). The chosen area covers the central area in the city of Ourinhos, located in southeastern Brazilian city, with subtropical climate. Four simulations were accomplished: an area with real buildings and vegetation on site, a “grassy” area where buildings have been replaced by grass in the central area, another grassy area, known as “grass/tree”, with additional trees in, and a final area called “Park” also grassy, where trees were added all over the area. The structures which showed thermal comfort within the ISO 7730 standards were the grassy area with no trees at 9 a.m., and a paved area, as well as the park area at 3 p.m. Other situations have presented values of PMV and PPD off the limits required by the rules; they were very close to those values. The only point that presented a far cry from the comfort required was the spot in the asphalt at 9 a.m. The other situations showed PMV and PPD values not far from the limits of comfort. Only the point on the asphalt showed values far from the limit of comfort at 9 a.m.
Resumo:
The urban microclimate plays an important role in building energy consumption and thermal comfort in outdoor spaces. Nowadays, cities need to increase energy efficiency, reduce pollutant emissions and mitigate the evident lack of sustainability. In light of this, attention has focused on the bioclimatic concepts use in the urban development. However, the speculative unsustainability of the growth model highlights the need to redirect the construction sector towards urban renovation using a bioclimatic approach. The public space plays a key role in improving the quality of today’s cities, especially in terms of providing places for citizens to meet and socialize in adequate thermal conditions. Thermal comfort affects perception of the environment, so microclimate conditions can be decisive for the success or failure of outdoor urban spaces and the activities held in them. For these reasons, the main focus of this work is on the definition of bioclimatic strategies for existing urban spaces, based on morpho-typological components, urban microclimate conditions and comfort requirements for all kinds of citizens. Two case studies were selected in Madrid, in a social housing neighbourhood constructed in the 1970s based on Rational Architecture style. Several renovation scenarios were performed using a computer simulation process based in ENVI-met and diverse microclimate conditions were compared. In addition, thermal comfort evaluation was carried out using the Universal Thermal Climate Index (UTCI) in order to investigate the relationship between microclimate conditions and thermal comfort perception. This paper introduces the microclimate computer simulation process as a valuable support for decision-making for neighbourhood renovation projects in order to provide new and better solutions according to the thermal quality of public spaces and reducing energy consumption by creating and selecting better microclimate areas.
Resumo:
Solar passive strategies that have been developed in vernacular architecture from different regions are a response to specific climate effects. These strategies are usually simple, low-tech and have low potential environmental impact. For this reason, several studies highlight them as having potential to reduce the demands of non-renewable energy for buildings operation. In this paper, the climatic contrast between northern and southern parts of mainland Portugal is presented, namely the regions of Beira Alta and Alentejo. Additionally, it discusses the contribution of different climate-responsive strategies developed in vernacular architecture from both regions to assure thermal comfort conditions. In Beira Alta, the use of glazed balconies as a strategy to capture solar gains is usual, while in Alentejo the focus is on passive cooling strategies. To understand the effectiveness of these strategies, thermal performances and comfort conditions of two case studies were evaluated based on the adaptive comfort model. Field tests included measurement of hygrothermal parameters and surveys on occupants’ thermal sensation. From the results, it has been found that the case studies have shown a good thermal performance by passive means alone and that the occupants feel comfortable, except during winter where there is the need to use simple heating systems.
Resumo:
A sound statistical methodology is presented for modelling the correspondence between the characteristics of individuals, their thermal environment, and their thermal sensation. The proposed methodology substantially improves that developed by P.O. Fanger, by formulating a more general and precise model of thermal comfort. It enables us to estimate the model from a sample of data where all the parameters of comfort vary at the same time, which is not possible with that adopted by Fanger. Moreover, the present model is still valid when thermal conditions are far from optimum. (C) 1997 Elsevier Science Ltd.