907 resultados para supercritical extraction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para a obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: Increasing restrictions on the use of artificial pigments in the food industry, imposed by the international market, have increased the importance of raw materials containing natural pigments. Of those natural substances with potential applications turmeric rhizomes (Curcuma longa L), are one of the most important natural sources of yellow coloring. Three different pigments (curcumin, desmetoxycurcumin, and bis-desmetoxycurcumin) constitute the curcuminoids. These pigments are largely used in the food industry as substitutes for synthetic dyes like tartrazin. Extraction of curcuminoids from tumeric rhizomes with supercritical CO2 can be applied as an alternative method to obtain curcuminoids, as natural pigments are in general unstable, and hence degrade when submitted to extraction with organic solvents at high temperatures. Extraction experiments were carried out in a supercritical extraction pilot plant at pressures between 25 and 30 MPa and a temperature of 318 K. The influence of drying pretreatment on extraction yield was evaluated by analyzing the mass transfer kinetics and the content of curcuminoids in the extracts during the course of extraction. The chemical identification of curcuminoids in both the extract and the residual solid was performed by spectrophotometry. Mass transfer within the solid matrix was described by a linear first-order desorption model, while that in the gas phase was described by a convective mass transfer model. Experimental results showed that the concentration profile for curcuminoids during the supercritical extraction process was higher when the turmeric rhizomes were submitted to a drying pretreatment at 343 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pupunha (Guilielma speciosa) is the fruit of a palm tree typical of the Brazilian Northern region, whose stem is used as a source of heart of palm. The fruit, which is about 65% pulp, is a source of oil and carotenes. In the present work, an analysis of the kinetics of supercritical extraction of oil from the pupunha pulp is presented. Carbon dioxide was used as solvent. The extractions were carried out at 25 MPa and 323 K and 30 MPa and 318 K. The chemical composition of the extracts in terms of fatty acids was determined by gas chromatography. The amount of oleic acid, a saturated fatty acid, in the CO2 extracts was larger than that in the extract obtained with hexane. The overall extraction curves were modeled using the single-parameter model proposed in the literature to describe the desorption of toluene from activated coal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Extracts from malagueta pepper (Capsicum frutescens L.) were obtained using supercritical fluid extraction (SFE) assisted by ultrasound, with carbon dioxide as solvent at 15MPa and 40°C. The SFE global yield increased up to 77% when ultrasound waves were applied, and the best condition of ultrasound-assisted extraction was ultrasound power of 360W applied during 60min. Four capsaicinoids were identified in the extracts and quantified by high performance liquid chromatography. The use of ultrasonic waves did not influence significantly the capsaicinoid profiles and the phenolic content of the extracts. However, ultrasound has enhanced the SFE rate. A model based on the broken and intact cell concept was adequate to represent the extraction kinetics and estimate the mass transfer coefficients, which were increased with ultrasound. Images obtained by field emission scanning electron microscopy showed that the action of ultrasonic waves did not cause cracks on the cell wall surface. On the other hand, ultrasound promoted disturbances in the vegetable matrix, leading to the release of extractable material on the solid surface. The effects of ultrasound were more significant on SFE from larger solid particles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An overview of the studies carried out in our laboratories on supercritical fluid extraction (SFE) of volatile oils from seven aromatic plants: pennyroyal (Mentha pulegium L.), fennel seeds (Foeniculum vulgare Mill.), coriander (Coriandrum sativum L.), savory (Satureja fruticosa Beguinot), winter savory (Satureja montana L.), cotton lavender (Santolina chamaecyparisus) and thyme (Thymus vulgaris), is presented. A flow apparatus with a 1 L extractor and two 0.27 L separators was built to perform studies at temperatures ranging from 298 to 353 K and pressures up to 30.0 MPa. The best compromise between yield and composition compared with hydrodistillation (HD) was achieved selecting the optimum experimental conditions of extraction and fractionation. The major differences between HD and SFE oils is the presence of a small percentage of cuticular waxes and the relative amount of thymoquinone, an oxygenated monoterpene with important biological properties, which is present in the oils from thyme and winter savory. On the other hand, the modeling of our data on supercritical extraction of volatile oil from pennyroyal is discussed using Sovova's models. These models have been applied successfully to the other volatile oil extractions. Furthermore, other experimental studies involving supercritical CO2 carried out in our laboratories are also mentioned.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Residual fibers from palm oil production are a good source of carotene, since they contain more than 5% of the original oil, with about 5000 ppm of carotenoids. As carotenoids are thermosensitive molecules, supercritical CO2 can be used for oil recovery, because this technique employs low temperatures. In this work results of oil extraction experiments from pressed palm oil fibers are shown. Fibers were from AGROPALMA, an industry which is located in Tailândia (Pará, Brazil). Extractions were carried out at 200, 250 and 300 bar and at temperatures of 45 and 55oC. Oil was analyzed by UV/vis spectrophotometry for total carotene determination. Results showed a large increase in extraction rate from 200 to 250 bar and a small variation from 250 to 300 bar. The total amount of carotenes did not increase in the course of extraction at 300 bar, but it showed a large increase at 200 and at 250 bar. Free fatty acids are present in amounts larger than those found in commercial oils.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, experimental data for the system Lippia alba + CO2 is presented. The major constituents of the L. alba volatile oil are limonene and carvone. Thus, literature data for the systems limonene + CO2 and carvone + CO2, and the Peng-Robinson equation of state (PR-EOS) were used to select the operating temperature and pressure, which maximize the global yield in L. alba extract. Global yields were determined at 80, 100, and 120 bar and 40, 45, and 50 degrees C. L. alba extracts were also obtained by conventional processes (hydrodistillation, low-pressure ethanol extraction and Soxhlet ethanol). The chemical compositions of the extracts were determined by gas and thin layer chromatography (TLC). The secretor structures of L. alba were observed by scanning electron microscopy (SEM) before and after supercritical extraction. The largest yield (similar to 7%, mass of extract/mass of dry solid) of the CO2-extract was obtained at 318 K and 100 bar. The chemical compositions of the CO2-extracts were different from those of the extracts obtained by Soxhlet and low-pressure solvent extraction (LPSE) because of the co-extraction of heavy substances by ethanol. The operating conditions that maximized the carvone and limomene yields were 80 bar and 323 K (80 mass%) and 120 bar and 323 K (17 mass%), respectively. (c) 2004 Elsevier B.V All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Extracts from Baccharis dracunculifolia leaves were obtained using the following solvents: supercritical carbon dioxide (SC-CO2), ethanol and methanol. Supercritical extraction was carried out at temperatures of 40, 50 and 60 degrees C and pressures of 20, 30 and 40 MPa. Four phenolic compounds were analysed in the extracts by high-performance liquid chromatography: 3,5-diprenyl-4-hydroxycinnamic acid (DHCA or artepillin C); 3-prenyl-4-hydroxycinnamic acid (PHCA); 4-hydroxycinnamic acid (p-coumaric acid) and 4-methoxy-3,5,7-trihydroxyflavone (kaempferide). The global extraction yields (X-0) obtained by the conventional methods with ethanol and methanol were higher than those obtained by SC-CO2. However on analysing the components of interest extracted at 60 degrees C and 40 MPa, the extraction yields of kaempferide, DHCA and PHCA were 156%, 98% and 64% higher, respectively, than in the ethanolic extracts. Only the p-coumaric acid extraction yield was better when extracted using the conventional method. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Different extraction processes were employed to extract the polyphenolic compounds from pitanga (Eugenia uniflora L) leaves: a one-step process using water, ethanol or supercritical CO(2) as solvents, and a two-step process using supercritical CO(2) followed by either water or ethanol. The total polyphenolic compounds, total flavonoids and antioxidant activity were determined in all the extracts obtained. The process performance was evaluated with respect to three variables: global extraction yield, concentration and yield of both polyphenols and flavonoids in the extracts. For the one-step extraction, the results showed that the extraction yield increased with solvent polarity. For the two-step process, the results suggested that water was more efficient in extracting the phenolic compounds from E. uniflora when the matrix was previously extracted with scCO(2). With respect to the antioxidant activity, the ethanolic extracts obtained from both processes, using either the DPPH radical scavenging method or the beta-carotene bleaching method, presented high antioxidant activities. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The leaves of the Pitanga bush (Eugenia uniflora L.) are considered to be effective against many diseases. Extracts from Pitanga leaves have been found to show pronounced anti-inflammatory action and to have antimicrobial and antifungal activities, among other properties. In this work, extracts from Pitanga leaves were obtained by hydrodistillation and by extraction with supercritical carbon dioxide (SC-CO(2)) at three conditions of temperature and pressure. In the SC-CO(2) extractions also were collected the components that are lost with the CO(2) in the exit of the system using Porapak-Q polymer trap. All extracts were analyzed by gas chromatography-mass spectrometry (GC-MS). Thirty-nine compounds were found in the extracts and twenty-six were identified. The main components identified in the extracts in decreasing quantitative order were: curzerene, germacrene B, C(15)H(20)O(2) and beta-elemene for hydrodistillation; C(15)H(20)O(2) and curzerene for SC-CO(2) extracts and 3-hexen-1-ol, curzerene, C(15)H(20)O(2), beta-elemene and germacrene B for SC-CO(2) extracts captured in Porapak-Q. PRACTICAL APPLICATIONS The natural extracts are a potential source of compounds possessing biological activities. They can be used in foods, pharmaceutics and cosmetics. Pitanga is an exotic fruit from Brazil and extracts from its leaves have been used against many diseases in Brazilian folk medicine. Supercritical extraction is an interesting process for the production of natural extracts because it is a clean process and the knowledge of composition of extracts is crucial for the identification of the probable active components.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work was to evaluate the antioxidant properties of ginger and rosemary extracts, obtained by supercritical extraction. The extracts were characterized by HPLC, GC-MS, phenolic compounds content and antioxidant activity. The main active compounds were identified and high content of phenolic compounds was observed. The extracts presented high antioxidant activity against the free radicals ABTS•+ (350 and 200 mM Trolox/g, for ginger and rosemary, respectively) and DPPH•+ (145 and 80 mM Trolox/g, for ginger and rosemary, respectively). These results suggested that the attained extracts are potential substitutes of synthetic antioxidants used in chemical, food and pharmaceutical industries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work is focused on the chemical distribution of volatile and semi-volatile compounds of 18 native populations of Maytenus ilicifolia collected all over Brazil. The extracts of bulk samples (30 plants) of each population were obtained by supercritical CO2 extraction technique, and analyzed by GC/MS. The quantification of compounds (phytol, squalene, vitamin E, limonene, stigmasterol, friedelan-3-ol, friedelin, fridelan-3-one, palmitic acid and geranyl acetate) showed significant variations within the different populations, which could be related tom microclimate characteristics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effective diffusivity of clove essential oil in subcritical liquid CO2 was estimated. The experimental apparatus employed was a fixed-bed extractor. The fixed bed was formed with grounded (mesh -32 + 65) and compacted clove buds which were considered a solid element. The effective diffusion coefficient was evaluated by fitting the experimental concentration profile to the unsteady state mass balance equation for unidirectional diffusion in a finite solid medium. The diffusion coefficient was related to the concentration of oil in the solid by an exponential function. The estimated values of the effective diffusion coefficient varied from 3.64 to 5.22x10-10 m2/s. The average relative errors were lower than 3.1%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ginger (Zingiber officinale Roscoe) belongs to the Zingiberacea family. It is a spice of great commercial importance. In this work ginger oleoresin was obtained with ethanol, isopropanol and liquid carbon dioxide. The chemical compositions of the extract were compared with each other. All oleoresin samples had monoterpenes and sesquiterpenes. Carboxylic acids were found in organic solvent extracts for an extraction time of 2 hours. The component responsible the for pungent characteristic of the oleoresin, gingerois, were detected in samples obtained with organic solvent for extraction times of 6 hours and in samples obtained with CO2 liquid for extraction times of 2 hours.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The generalized maximum likelihood method was used to determine binary interaction parameters between carbon dioxide and components of orange essential oil. Vapor-liquid equilibrium was modeled with Peng-Robinson and Soave-Redlich-Kwong equations, using a methodology proposed in 1979 by Asselineau, Bogdanic and Vidal. Experimental vapor-liquid equilibrium data on binary mixtures formed with carbon dioxide and compounds usually found in orange essential oil were used to test the model. These systems were chosen to demonstrate that the maximum likelihood method produces binary interaction parameters for cubic equations of state capable of satisfactorily describing phase equilibrium, even for a binary such as ethanol/CO2. Results corroborate that the Peng-Robinson, as well as the Soave-Redlich-Kwong, equation can be used to describe phase equilibrium for the following systems: components of essential oil of orange/CO2.