890 resultados para suckling mice
Resumo:
There are many viruses that are able to infect the alimentary tract of man. Little is known, however, about the mechanism of infection itself or the pathophysiology of the gut during infection. 'The research reported here is concerned with the differences in susceptibility among suckling mice of various ages inoculated by the intraperitoneal and intragastric routes. Since the normal mode of entry of many viruses to the gut is via the oral route, Coxsackievirus B5, a human enterovirus which does attack this way, was utilized. It is a non-tumor producing RNA virus that has been shown to act similarly in the mouse and human. The virus was pooled in HeLa cell cultures and titered by a plaquing assay in the same cell cultures. CD-l mice, 10, 14, 18, and 22 days old , were infected either orally or intraperitoneally with 5.0 x 10^10 (10 day old animals) and 1.0 x10^9 plaque forming units per animal. Dissections were done at 1 and 3 days post infection with samples of the blood, heart, liver, and gut being taken from each animal. Each sample was titered individually and the data presented as an average of six samples. As a result of previous work, it is known that the gut of a newborn mouse isn't able to decrease the concentration of the infecting dose and therefore provides no defense against an enteric infection with Coxsackievirus B5. In contrat, mature mice are able to reduce the amount of viral dissemination across the gut as well as inhibit replication after absorption has occurred. The results of this study indicate that there is a double barrier system developing in suckling mice that is involved with and directly related to the gastrointestinal tract The first part of this defense is the inhibition of penetration of virus across the gut when the primary site of' infection is the intestinal mucosa. This mechanism develops sometime around 20 to 22 days after birth. At about 16-18 days of age, suckling mice that were challenged intragastrically are able to stop active replication and initiate clearance of virus from the systemic circulation. There are many factors that might contribute to the marked decrease in susceptibility with age of suckling mice. Some of these or possibly a combination of these factors might explain the defense mechanisms described above, but to date, the chemistry or mechanical functioning of the gastrointestinal barrier to enteric viral infection is unknown.
Resumo:
Oropouche virus, of the family Bunyaviridae, genus Orthobunyavirus, serogroup Simbu, is an important causative agent of arboviral febrile illness in Brazil. An estimated 500,000 cases of Oropouche fever have occurred in Brazil in the last 30 years, with recorded cases also in Panama, Peru, Suriname and Trinidad. We have developed an experimental model of Oropouche virus infection in neonatal BALB/c mouse by subcutaneous inoculation. The vast majority of infected animals developed disease on the 5th day post infection, characterized mainly by lethargy and paralysis, progressing to death within 10 days. Viral replication was documented in brain cells by in situ hybridization, immunohistochemistry and virus titration. Multi-step immunohistochemistry indicated neurons as the main target cells of OROV infection. Histopathology revealed glial reaction and astrocyte activation in the brain and spinal cord, with neuronal apoptosis. Spleen hyperplasia and mild meningitis were also found, without viable virus detected in liver and spleen. This is the first report of an experimental mouse model of OROV infection, with severe involvement of the central nervous system, and should become useful in pathogenesis studies, as well as in preclinical testing of therapeutic interventions for this emerging pathogen. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The protective ability of cytotoxic T cells (CTL) raised in vitro against Japanese encephalitis virus (JEV) was examined by adoptive transfer experiments. Adoptive transfer of anti-JEV effecters by intracerebral (i.c.) but not by intraperitoneal (i.p.) or intravenous (i.v.) routes protected adult BALB/c mice against lethal i.c. JEV challenge. In contrast to adult mice, adoptive transfer of anti-JEV effecters into newborn (4-day-old) and suckling (8-14-day-old) mice did not confer protection. However, virus-induced death was delayed in suckling mice compared to newborn mice upon adoptive transfer. The specific reasons for lack of protection in newborn mice are not clear but virus load was found to be higher in newborn mice brains compared to those of adults and virus clearance was observed only in adult mice brains but not in newborn mice brains upon adoptive transfer. Specific depletion of Lyt 2.2(+), L3T4(+) or Thy-1(+) T cell populations before adoptive transfer abrogated the protective ability of transferred effecters. However, when Lyt 2.2(+) cell-depleted and L3T4(+) cell-depleted effecters were mixed and transferred into adult mice the protective activity was retained, demonstrating that both Lyt 2.2(+) and L3T4(+) T cells are necessary to confer protection. Although the presence of L3T4(+) T cells in adoptively transferred effector populations enhanced virus-specific serum neutralizing antibodies, the presence of neutralizing antibodies alone without Lyt 2.2(+) cells was not sufficient to confer protection.
Resumo:
Members of the morbillivirus genus, canine distemper (CDV), phocine distemper virus (PDV), and the cetacean viruses of dolphins and porpoises exhibit high levels of CNS infection in their natural hosts. CNS complications are rare for measles virus (MV) and are not associated with rinderpest virus (RPV) and peste des petits ruminants virus (PPRV) infection. However, it is possible that all morbilliviruses infect the CNS but in some hosts are rapidly cleared by the immune response. In this study, we assessed whether RPV and PPRV have the potential to be neurovirulent. We describe the outcome of infection, of selected mouse strains, with isolates of RPV, PPRV, PDV, porpoise morbillivirus (PMV), dolphin morbillivirus (DMV), and a wild-type strain of MV. In the case of RPV virus, strains with different passage histories have been examined. The results of experiments with these viruses were compared with those using neuroadapted and vaccine strains of MV, which acted as positive and negative controls respectively. Intracerebral inoculation with RPV (Saudi/81) and PPRV (Nigeria75/1) strains produced infection in Balb/C and Cd1, but not C57 suckling mice, whereas the CAM/RB rodent-adapted strain of MV infected all three strains of mice. Weanling mice were only infected by CAM/RB. Intranasal and intraperitoneal inoculation failed to produce infection with any virus strains. We have shown that, both RPV and PPRV, in common with other morbilliviruses are neurovirulent in a permissive system. Transient infection of the CNS of cattle and goats with RPV and PPRV, respectively, remains a possibility, which could provide relevant models for the initial stages of MV infection in humans.
Resumo:
Mammalian gastrointestinal tract and liver are self-renewing organs that are able to sustain themselves due to stem cells present in their tissues. In constant, inflammation-related epithelial damage, vigorous activation of stem cells may lead to their uncontrolled proliferation, and further, to cancer. GATA-4, GATA-5, and GATA-6 regulate cell proliferation and differentiation in many mammalian organs. Lack of GATA-4 or GATA-6 leads to defective endodermal development and cell differentiation. GATA-4 and GATA-5 are considered the ones with tumor suppressive functions, whereas GATA-6 is more related to tumor promotion. In the digestive system their roles in inflammation and tumor-related molecular pathways remain unclear. In this study, we examined the GATA-related molecular pathways involved in normal tissue organization and renewal and in inflammation-related epithelial repair in the gastrointestinal tract and liver. The overall purpose of this study was to elucidate the relation of GATA factors to gastrointestinal and hepatic disease pathology and to evaluate their possible clinical significance in tumor biology. The results indicated distinct expression patterns for GATA-4, GATA-5, and GATA-6 in the human and murine gastrointestinal tract and liver, and their involvement in the regulation of intestine-specific genes. GATA-5 was confined to the intestines of suckling mice, suggesting an association with postnatal enzymatic changes. GATA-4 was upregulated in bowel inflammation concomitantly with TGF-β signaling. In gastrointestinal tumors, GATA-4 was restricted to benign neoplasias of the stomach, while GATA-6 was detected especially at the invasive edges of malignant tumors throughout the gut. In the liver, GATA-4 was upregulated in pediatric tumors along with erythropoietin (Epo), which was detected also in the sera of tumor patients. Furthermore, GATA-4 was enhanced in areas of vigorous hepatic regeneration in patients with tyrosinemia type I. These results suggest a central role for GATA-4 in pediatric tumor biology of the liver. To conclude, GATA-4, GATA-5, and GATA-6 are associated with normal gastrointestinal and hepatic development and regeneration. The appearance of GATA-4 along with TGF-β-signaling in the inflammatory bowel suggests a protective role in the response to inflammation-related epithelial destruction. However, in extremely malignant pediatric liver tumors, GATA-4 function is unlikely to be tumor-suppressing, probably due to the nature of the very primitive multipotent tumor cells. GATA-4, along with its possible downstream factor Epo, could be utilized as novel hepatic tumor markers to supplement the present diagnostics. They could also serve a function in future biological therapies for aggressive pediatric tumors.
Resumo:
Oropouche, Caraparu, Guama, Guaroa and Tacaiuma viruses (Orthobunyavirus genus) cause human febrile illnesses and/or encephalitis. To achieve a therapeutical agent to prevent and/or treat these diseases we evaluated the antiviral action of Interferon-alpha (IFN-alpha) on these orthobunyaviruses. In vitro results showed that all the studied orthobunyaviruses are susceptible to antiviral action of IFN-alpha, but this susceptibility is limited and dependent on both concentration of drug and treatment period. In vivo results demonstrated that IFN-alpha present antiviral action on Oropouche and Guaroa viruses when used as a prophylactic treatment. Moreover, a treatment initiated 3 It after infection prevented the death of Guaroa virus infected-mice. Additionally, mortality of mice was related to the migration and replication of viruses in their brains. Our results suggest that IFN-alpha could be potentially useful in the prevention of diseases caused by Oropouche virus and in the prevention and/or treatment of diseases caused by Guaroa virus. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The low rates of nonsynonymous evolution observed in natural rabies virus (RABV) isolates are suggested to have arisen in association with the structural and functional constraints operating on the virus protein and the infection strategies employed by RABV within infected hosts to avoid strong selection by the immune response. In order to investigate the relationship between the genetic characteristics of RABV populations within hosts and the virus evolution, the present study examined the genetic heterogeneities of RABV populations within naturally infected dogs and foxes in Brazil, as well as those of bat RABV populations that were passaged once in suckling mice. Sequence analyses of complete RABV glycoprotein (G) genes showed that RABV populations within infected hosts were genetically highly homogeneous whether they were infected naturally or experimentally (nucleotide diversities of 0-0.95 x 10(-3)). In addition, amino acid mutations were randomly distributed over the entire region of the G protein, and the nonsynonymous/synonymous rate ratios (d(N)/d(S)) for the G protein gene were less than 1. These findings suggest that the low genetic diversities of RABV populations within hosts reflect the stabilizing selection operating on the virus, the infection strategies of the virus, and eventually, the evolutionary patterns of the virus. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
O vírus Morumbi é membro do sorogrupo Phlebotomus fever (família Bunyavírídae: gênero Phlebovírus) nativo da Região Amazônica. Seu vetor é desconhecido, mas supõem-se ser transmitido por flebotomíneos. Foi isolado em 1988 de ser humano apresentando quadro febril agudo. Este arbovírus, quando inoculado em camundongo por via cerebral, demonstrou viscerotropismo, induzindo inclusive lesões no fígado do animal inoculado. Com os objetivos de: i) estabelecer as características anátomo-patológicas e imuno-histoquímicas em fígado de camundongos albinos Swíss recém-nascidos experimentalmente infectados pelo vírus Morumbi; ii) verificar se o vírus apresenta hepatotropismo diferenciado na dependência de inoculação pelas vias cerebral, peritoneal ou subcutânea; iii) caracterizar detalhadamente os padrões anátomo-patológicos sequenciais no fígado; iv) demonstrar a localização do antígeno viral no tecido hepático ao longo da infecção experimental; v) estudar possíveis inter-relações entre os achados anátomo-patológicos e os imuno-histoquímicos. Foram estudados experimentalmente 71 camundongos Swíss recém-nascidos (dois e três dias), distribuídos ao final do experimento como segue: 21 animais inoculados por via intracerebral (IC), 21 por via intraperitoneal (IP) e 29 animais inoculados por via subcutânea (SC). Utilizou-se a dose infectante 5,0DL 50 /0,02ml de suspensão de vírus. Outros trinta, animais que não receberam inóculos, foram utilizados como grupo controle. Subgrupos de oito animais (seis inoculados e dois do grupo controle) foram sacrificados diariamente a intervalos de 24 em 24 horas, até 96 horas para os grupos IC e IP e até 120 horas para o grupo SC. Fragmentos de fígado de todos os animais foram fixados em solução de formalina neutra a 10%, incluídos em parafina, de onde foram obtidos cortes de 5 mm que foram corados pela técnica de hematoxilina-eosina para análise morfológica e, cortes adicionais, foram submetidos à técnica de imuno-histoquímica (Sistema Envision, DAKO, USA), utilizando a fosfatase alcalina e soro hiperimune do vírus Morumbi preparado em camundongos jovens, para detecção de antígeno viral. Foram estudados seis parâmetros de lesão em áreas portais e nove outros nos lóbulos, que foram semiquantificados numa escala que variou de zero (0) a três cruzes (+++), onde zero significou ausência de lesão e três cruzes lesão intensa. À microscopia óptica, ficou evidente que o vírus Morumbi inoculado em camundongos por três diferentes vias induz lesões em áreas portais e lobulares, caracterizando uma hepatite aguda com presença de corpúsculos acidófilos, semelhantes aos corpúsculos de Councilman -Rocha Lima, de distribuição irregular nos lóbulos, cujo aparecimento foi observado 24 horas pós-inoculação (p.i.) e atingiu o máximo de intensidade às 72 horas p.i. em animais inoculados por via IP. O exame imuno-histoquímico mostrou presença leve de antígeno viral a partir de 24 horas p.i. no grupo IC e a partir de 48 horas p.i. nos grupos IP e SC, havendo certo paralelismo em relação a intensidade de lesão morfológica, tendo- se observado o máximo de detecção de antígeno viral em animais inoculados por via IP e sacrificados às 72 horas p.i. A distribuição geral de antígeno foi observada especificamente nos lóbulos hepáticos, no citoplasma de hepatócitos íntegros e necrosados e no interior de células de Kupffer, não havendo preferência por nenhuma das três zonas do lóbulo. Concluiu-se que: i) o modelo de infecção experimental em camundongos foi excelente para o estudo das lesões causadas pelo vírus Morumbi, podendo ser selecionada a via IP como referencial; ii) em todas as vias utilizadas (IP, IC e SC) se confirmou a infecção pelo vírus Morumbi com marcante detecção de seu antígeno, no tecido hepático de camundongos Swiss; iii) a presença de antígeno do vírus Morumbi no fígado desses camundongos associou-se ao aparecimento de hepatite aguda, com necrose focal; iv)hepatite intensa pôde ser observada em fígado de camundongos sacrificados 72 h p.i. com o vírus Morumbi por via IP, o que não foi verificado com as outras duas vias; v) a hepatite aguda mostrou-se limitada, neste experimento, tendendo a desaparecer na maioria dos camundongos inoculados, com avançar das horas; vi) colestase não alteração freqüente na hepatite experimental pelo vírus Morumbi, quando inoculada por via IC, IP e SC; vii) o antígeno do vírus Morumbi teve predominância pela localização intracitoplasmática, padrão granular, nos hepatócitos e células de Kupffer; viii) antígeno viral foi detectado em fragmento hepático de animais experimentalmente inoculados com o vírus Morumbi, a partir das 24 horas via IC e a partir de 48 horas nas vias IP e SC.
Resumo:
Com o objetivo de avaliar a diversidade de insetos hematófagos e de vertebrados silvestres, bem como, a fauna de arbovírus circulante antes das ações de exploração mineral na jazida polimetálica do Salobo, Província Mineral de Carajás, Pará, Brasil, no período de dezembro de 2005 a junho de 2007, um estudo longitudinal foi realizado (sete viagens) sendo capturados e identificados insetos hematófagos (famílias Ceratopogonidae, Culicidae, Psychodidae e Simulidae) capturados em armadilhas luminosas CDC e Shannon, e atração humana; e também foram capturados e identificados vertebrados silvestres das classes das aves (redes de nylon), dos mamíferos e dos répteis (armadilhas Shermann e Tommahwak); foi feita pesquisa e determinação da prevalência de anticorpos nos soros e/ou plasmas desses vertebrados contra arbovírus e tentativas de isolamento viral. Foram capturados 44.795 (1.220 lotes) insetos hematófagos, sendo a família Psychodidae a mais prevalente. As espécies mais abundantes de culicídeos foram Haemagogus leucocelaenus e Haemagogus janthinomys. Foram também capturados 1.288 vertebrados silvestres, e os roedores Proechimys guyannensis e Oryzomys capito, e as aves Turdus albicollis e Phlegopsis nigromaculata foram as espécies mais prevalentes. Foram isoladas em camundongos recém-nascidos, três cepas do Virus Tucunduba, obtidas a partir de lotes de Anopheles (Nys.) species, Culex coronator e Wyeomyia species; foram detectados anticorpos para os seguintes arbovírus: encefalite Saint Louis (VSLE), Ilhéus, encefalite eqüina Oeste, Cacipacoré, Icoaraci, Rocio, Bussuquara e Mucambo, sendo a maior prevalência de anticorpos obtida para o VSLE.
Resumo:
O Virus Oropouche (VORO; Bunyaviridae, Orthobunyavirus) é um dos mais importantes arbovírus que infecta humanos na Amazônia brasileira, e é causador da febre do Oropouche. Entre 1961 e 2009, um grande número de epidemias foi registrado em diferentes centros urbanos dos Estados Brasileiros do Acre, Amapá, Amazonas, Maranhão, Pará, Rondônia e Tocantins, e também no Panamá, Peru e Trinidad & Tobago. Este trabalho teve por objetivo desenvolver um estudo retrospectivo dos aspectos epidemiológicos e moleculares do VORO enfatizando sua distribuição, a dinâmica das epidemias ocorridas no período, bem como a dispersão de diferentes genótipos na América Latina e no Brasil como contribuição à epidemiologia molecular do VORO. Para tanto 66 isolamentos do VORO pertencentes ao acervo do Instituto Evandro Chagas foram propagados em camundongos e em cultura de células VERO, seguida da extração do RNA viral e obtenção do cDNA por RTPCR; os amplicons foram purificados e submetidos ao sequenciamento nucleotídico para análises moleculares e evolução, incluindo o rearranjo genético, estudo de relógio molecular e análise de dispersão viral. Foi demonstrada a presença de quatro linhagens distintas do VORO na Amazônia brasileira (genótipos I, II, III e IV), sendo os genótipos I e II, respectivamente os mais frequentemente encontrados em áreas da Amazônia ocidental e oriental. Esses e o genótipo III estão constantemente evoluindo, mediante o mecanismo “boom and boost” que resulta na emergência seguida de substituição das sublinhagens (subgenótipos) circulantes por outras mais recentes. O genótipo III do VORO, previamente encontrado somente no Panamá, foi descrito na Amazônia e Sudeste do Brasil. Os dados obtidos pela análise filogenética comparativa das topologias para os segmentos PRNA e MRNA sugerem que o VORO utiliza o rearranjo genético como mecanismo de geração de biodiversidade viral, sendo o genótipo I o mais estável e o II o mais instável e, portanto, mais sensível às pressões evolutivas; foi reconhecido um novo genótipo do VORO neste estudo em amostras isoladas em Manaus no ano de 1980, que foi denominado de genótipo IV. O estudo do relógio molecular mostrou que a emergência do VORO se deu no Estado do Pará provavelmente há 223 anos e daí ao longo dos anos se dispersou pela PanAmazônia bem como para o Caribe, sendo que o genótipo I foi o que originou os demais genótipos do VORO.
Resumo:
Twenty seven (48.2%) culture supernatants of 56 Escherichia coli isolated from diarrheic lamb feces (7 to 10 days old) in Sao Paulo State, Brazil, presented positive results to suckling mice assay (fluid accumulation) but none caused cytopathic effects on Vero and CHO cells, indicating that these strains did not produced LT or VT toxins. PCR assays showed that these 27 E. coli strains harbored estA, that codifies for STa, but not for stx1, stx2 or cnf genes. The positive STa strains were checked for genes that codify for F41, F17 and K99 fimbriae, wich are considered colonization factors in ETEC. Only F17 was detect in two samples (7.4%). Twelve of 27 STa positive carried hlyA gene and presented hemolytic activity in blood Agar. Presence of rotavirus was not detected among the diarrheic feces. These data suggests that STa must be an important diarrheagenic factor to small ruminants in Sao Paulo State.
Resumo:
We have previously developed replicon vectors derived from the Australian flavivirus Kunjin that have a unique noncytopathic nature and have been shown to direct prolonged high-level expression of encoded heterologous genes in vitro and in vivo and to induce strong and long-lasting immune responses to encoded immunogens in mice. To facilitate further applications of these vectors in the form of virus-like particles (VLPs), we have now generated a stable BHK packaging cell line, tetKUNCprME, carrying a Kunjin structural gene cassette under the control of a tetracycline-inducible promoter. Withdrawal of tetracycline from the medium resulted in production of Kunjin structural proteins that were capable of packaging transfected and self-amplified Kunjin replicon RNA into the secreted VLPs at titers of up to 1.6 x 10(9) VLPs per ml. Furthermore, secreted KUN replicon VLPs from tetKUNCprME cells could be harvested continuously for as long as 10 days after RNA transfection, producing a total yield of more than 1010 VLPs per 106 transfected cells. Passaging of VLPs on Vero cells or intracerebral injection into 2- to 4-day-old suckling mice illustrated the complete absence of any infectious Kunjin virus. tetKUNCprME cells were also capable of packaging replicon RNA from closely and distantly related flaviviruses, West Nile virus and dengue virus type 2, respectively. The utility of high-titer KUN replicon VLPs was demonstrated by showing increasing CD8(+)-T-cell responses to encoded foreign protein with increasing doses of KUN VLPs. A single dose of 2.5 x 10(7) VLPs carrying the human respiratory syncytial virus M2 gene induced 1,400 CD8 T cells per 10(6) splenocytes in an ex vivo gamma interferon enzyme-linked immunospot assay. The packaging cell line thus represents a significant advance in the development of the noncytopathic Kunjin virus replicon-based gene expression system and may be widely applicable to the basic studies of flavivirus RNA packaging and virus assembly as well as to the development of gene expression systems based on replicons from different flaviviruses.
Resumo:
Milk contains numerous bioactive substances including immunoglobulins, cytokines, growth factors and components that exert antibiotic and prebiotic activity (Field, 2005). Little is known about the biological effects of individual milk bioactives, despite the fact that natural milk improves intestinal development and immune system functions in neonates (Donovan et al., 1994; Field, 2005) relative to milk formula. Characterization of the biological effects of such components is important for optimal production of infant milk formulas to be used when mother’s milk is not available. Milk components with preliminary evidence of positive effects on the intestinal growth and mucosal immunity include osteopontin (OPN). Osteopontin is a phosphorylated acidic glycoprotein expressed by a number of different immune and non-immune cells and tissues (Sodek et al., 2000). It is also present in body fluids including blood, bile and milk (Sodek et al., 2000). Osteopontin is a multifunctional protein that is implicated in a wide number of biological processes including cell survival, bone remodeling, and immune modulatory functions (Sodek et al., 2000). Furthermore, Schack and colleagues (2009) demonstrated that the concentration of OPN in human milk is considerably higher than in bovine milk and infant formulas. Taken together, it is likely that OPN plays a role in the early development of gastrointestinal tract and mucosal immune responses in infants. Since the neonatal pig shares anatomical, physiological, immunological, and metabolic similarities with the human infants (Moughan, et al., 1992), they were selected as the animal model in our studies. Our first aim was to investigate the effects of OPN on piglet intestinal development. Newborn, colostrum-deprived piglets (n=27) were randomized to receive three treatments: formula with bovine OPN (OPN; 140 mg/L); formula alone (FF); or sow reared (SR) for 21 days. Body weight, intestinal weight and length, mucosal protein and DNA content, disaccharidase activity, villus morphology, and crypt cell proliferation were measured. Statistical significance was assigned at P<0.05. No significant effects of OPN were observed for body weight, intestinal weight and length. Mucosal protein content of SR piglets was lower than FF and OPN piglets in the duodenum, but higher than FF and OPN piglets in the ileum. No significant effects of diet in mucosal DNA content were detected for the three regions of the small intestine. Lactase and sucrase activities of SR piglets were higher than the two formula-fed groups in the duodenum, lower in the ileum. No significant effects of diet on lactase and sucrase activities were noted between two formula-fed groups in the duodenum and ileum. Jejunal lactase activity of FF piglets was higher than SR piglets, whereas no significant effect of diet was observed in jejunal sucrase activity among the three groups. Duodenal and ileal villus height and villus area of SR piglets were lower than two formula-fed groups, while OPN piglets did not differ from FF piglets. There was a significant effect of diet (P<0.0001) on jejunal crypt cell proliferation, with proliferation in OPN piglets being intermediate between that of FF and SR. In summary, supplemental OPN increased jejunal crypt cell proliferation, independent of evident morphological growth, and had a minor impact on disaccharidase activity in the small intestine of neonatal piglets. Rotavirus (RV) is the most common viral cause of severe gastroenteritis in infants and young children worldwide (Parashar et al., 2006). Maeno et al. (2009) reported that OPN knockout (OPN-KO) suckling mice were more susceptible to RV infection compared to wild-type (WT) suckling mice. To detect the role of OPN in intestinal immune responses of neonates, the goal of the second study was to evaluate whether supplemental OPN influenced the serum antibody responses to RV vaccination in neonatal piglets. Newborn, colostrum-deprived piglets were randomized into two dietary groups: formula with bovine OPN (OPN; 140 mg/L) and formula alone (FF) for 35 days. On d7, piglets in each dietary group were further randomized to receive rotavirus (RV) vaccination (Rotarix®) (FF+RV and OPN+RV) or remained non-vaccinated (FF+NV and OPN+NV). Booster vaccination was provided on d14. Blood samples were collected on d7, 14, 21, 28 and 35. RV-specific serum immunoglobulin (Ig) G, IgA, IgM and total serum IgG, IgA, IgM were measured by ELISA. Statistical significance was assigned at P<0.05, with trends reported as P<0.10. Body weight gain was unaffected by diet and/or vaccination. No significant effect of oral OPN supplementation was observed for RV-specific antibody responses and total Igs levels. After the combination of dietary groups, RV piglets had significantly higher RV-specific IgM concentrations compared to NV piglets. Although there were higher means of RV-specific IgG and RV-specific IgA concentrations in RV group than their counterparts in NV group, the difference did not reach statistical significance. RV-specific IgM reached a peak at d7 post booster vaccination (PBV), whereas the RV-specific IgG and IgA peaked later at PBV 14 or 21. Total Igs were unaffected by RV vaccination but were significantly increased over time, following similar pattern as RV-specific Igs. In summary, neonatal piglets generated weak antibody responses to RV vaccination. Supplemental OPN did not enhance RV-specific serum antibody responses and total serum Igs levels in neonatal piglets with or without RV vaccination. In conclusion, we observed normal developmental changes in the small intestine and serum Igs levels in neonatal piglets over time. Oral OPN supplementation showed minimal impacts on intestinal development and no effect on serum Igs levels. The role of supplemental OPN on the growth and development of infants is still inconclusive. Future studies should measure other physiological and immunological parameters by using different models of vaccination or infection.
Resumo:
Exposure to isoflavones (ISO), abundant in soy protein infant formula, for the first 5 days of life results in higher bone mineral density (BMD),greater trabecular connectivity and higher fracture load of lumbar vertebrae (LV) at adulthood. The effect of lengthening the duration of exposure to ISO on bone development has not been studied. This study determined if providing ISO for the first 21 days of life, which more closely mimics the duration that infants are fed soy protein formula, results in higher BMD, improved bone structure and greater strength in femurs and LV than a 5-day protocol. Female CD-1 mice were randomized to subcutaneous injections of ISO (7 Q1 mg kg/body weight/day) or corn oil from postnatal day 1 to 21. BMD, structure and strength were measured at the femur and LV at 4 months of age, representing young Q2 adulthood. At the LV, exposure to ISO resulted in higher (P,0.05) BMD, trabecular connectivity and fracture load compared with control (CON). Exposure to ISO also resulted in higher (P,0.05) whole femur BMD, higher (P,0.05) bone volume/total volume and Q3 lower (P,0.05) trabecular separation at the femur neck, as well as greater (P,0.05) fracture load at femur midpoint and femur neck compared with the CON group. Exposure to ISO throughout suckling has favorable effects on LV outcomes, and, unlike previous studies using 5-day exposure to ISO, femur outcomes are also improved. Duration of exposure should be considered when using the CD-1 mouse to model the effect of early life exposure of infants to ISO.
Resumo:
We would like to thank the animal house staff and all members of the Energetics group for their invaluable help at various stages throughout the project. This work was supported by Natural Environment Research Council grant (NERC, NE/C004159/1). YG was supported by a scholarship from the rotary foundation. LV was supported by a Rubicon grant from the Netherlands Scientific Organisation (NWO).