999 resultados para sublittoral communities
Resumo:
The communities of brachyuran crabs living on soft bottoms off Ubatuba in SE Brazil were studied with respect to their structure, bathymetric distribution, composition, diversity and indices of similarity. The data were analyzed using multivariate techniques of classification and ordination. Most of the individuals caught during summer were the swimming crab Portunas spinicarpus at the 35 m isobath, which contributed to the much-decreased diversity in this season and site. Multivariate analysis indicated that the species were distributed according to depth and also in relation to environmental gradients.
Resumo:
Grab and dredge samples have been collected on a grid of 155 sublittoral stations in the Bristol Channel. The faunal data have been analysed using a hierarchical sorting technique to cluster stations with similar species compositions. At a similarity level of 18%, groups of stations with a species composition similar to the classical Petersen communities were defined. Three of Petersen's communities were recognized in the outer part of the Channel, the Venus, Abra and Modiolus communities. The fauna of the inner part of the Channel is reduced and does not correspond with any previously recognized community type. Possible causes for this faunal reduction are discussed. The substrate distribution and the macrofaunal community distribution are mapped. Side-scan sonograms are shown to be a useful adjunct to the interpretation of faunal distributions.
Resumo:
Sublittoral macrobenthic communities in the Skomer Marine Nature Reserve (SMNR), Pembrokeshire, Wales, were sampled at 10 stations in 1993, 1996, 1998, 2003, 2007 and 2009 using a Day grab and a 0.5 mm mesh. The time series is analysed using Similarities Profiles (SIMPROF) tests and associated methods. Q-mode analysis using clustering with Type 1 SIMPROF addresses multivariate structure among samples, showing that there is clear structure associated with differences among years. Inverse (r-mode) analysis using Type 2 SIMPROF decisively rejects a hypothesis that species are not associated with each other. Clustering of the variables (species) with Type 3 SIMPROF identifies groups of species which covary coherently through the time-series. The time-series is characterised by a dramatic decline in abundances and diversity between the 1993 and 1996 surveys. By 1998 there had been a shift in community composition from the 1993 situation, with different species dominating. Communities had recovered in terms of abundance and species richness, but different species dominated the community. No single factor could be identified which unequivocally explained the dramatic changes observed in the SMNR. Possible causes were the effects of dispersed oil and dispersants from the Sea Empress oil spill in February 1996 and the cessation of dredge-spoil disposal off St Anne’s Head in 1995, but the most likely cause was severe weather. With many species, and a demonstrable recovery from an impact, communities within the SMNR appear to be diverse and resilient. If attributable to natural storms, the changes observed here indicate that natural variability may be much more important than is generally taken into account in the design of monitoring programmes.
Resumo:
In order to reveal the structure of the sparsely known deeper sublittoral hard bottom communities of glacial Kongsfjorden, the macroepibenthos from six depth zones (30-200 m) was analysed. A total of 180 still images derived from 6-h video recorded at the Kongsfjordneset remotely operated vehicle station were assessed quantitatively. Overall 27 mainly suspension-feeding species/taxa were observed. Of these, two-thirds have an arcto-boreal distribution, while the remainder are cosmopolitan. The overall mean epibenthos abundance was 33 ind./m**2 with maximum values at 150 m depth (97.9 ind./m**2). The majority of the taxa inhabited the entire depth range. Encrusting red algae, an unidentified sponge and the sea anemone Urticina eques, characterized the assemblage of the shallow zone. The sea anemones Hormathia spp. were important below 30 m, the Serpulid polychaete Protula tubularia was characteristic for the community below 50 m and the demosponge Haliclona sp. was a key taxon between 100 and 200 m depth. Cluster analysis and non-metrical multidimensional scaling based on abundance data showed differences between the assemblages along the bathymetric gradient, but only in the shallower depths in relation to the substratum surface incline. As surface and tidal current impacts attenuate with increasing depth, there is a gradual trend from robust key species towards more fragile ones (i.e. P. tubularia), in line with the 'Physical control hypothesis'.
Resumo:
The vegetation of a small fjord and its adjacent open shore was documented by subaquatic video. The distribution of individual species of macroalgae and the composition of assemblages were compared with gradients of light availability, hydrography, slope inclination, substratum, and exposition to turbulence and ice. The sublittoral fringe is usually abraded by winterly ice floes and devoid of large, perennial algae. Below this zone, the upper sublittoral is dominated by Desmarestia menziesii on steep rock faces, where water movements become irregular, or by Ascoseira mirabilis and Palmaria decipiens on weakly inclined slopes with steady rolling water movements. In the central sublittoral above 15 m, where turbulence is still active, Desmarestia anceps is outcompeting all other species on solid substratum, However, the species is not able to persist on loose material under these conditions. Instead, Himantothallus grandifolius may occur. Deeper, where turbulence usually is negligible, Desmarestia anceps also covers loose material. The change of dominance to Himantothallus grandifolius in the deep sublittoral cannot completely be explained at present. Himantothallus grandifolius also prevails in a mixed assemblage under the influence of grounding icebergs. Most of the smaller algae are opportunists with different degrees of tolerance for turbulence, but some apparently need more stable microhabitats and thus are dependent from continuing suppression of competitive large phaeophytes.
Resumo:
Two shelf communities from the central part off the California Peninsula are described. The community of Amphiodia urtica - Nephtys ferruginea develops in the central part of the shelf within the depth range 95-105 m. The community of Nephtys ferruginea - Amphiura acrystata develops on the shelf edge at depth 110 m. Biomasses of both communities are very low (about 10 g/m**2). Species richness of the shelf community is high; more than 60 species occur in samples (43-51 species per a community). Various echinoderms and some other groups are abundant on the Californian shelf; these groups are absent in shelf areas of Peruvian and Benguela upwellings. Species structures of the communities were analyzed; the communities were shown to consist of coexisting, but not interacting guilds; this indicates that the communities are undersaturated with individuals. At the same time values of ABC-indices indicate that the communities are stable. We suggest that in this case adaptation to unfavorable but stable environment is observed (selection of species-stressolarents). An explanation seems to lie in the penetrating type of the upwelling in the Californian upwelling zone. Low biomass values seem to result from mass development of necto-benthic carnivorous crustaceans-galateids Pleuroncodes planiceps.
Resumo:
This paper discusses a framework in which catalog service communities are built, linked for interaction, and constantly monitored and adapted over time. A catalog service community (represented as a peer node in a peer-to-peer network) in our system can be viewed as domain specific data integration mediators representing the domain knowledge and the registry information. The query routing among communities is performed to identify a set of data sources that are relevant to answering a given query. The system monitors the interactions between the communities to discover patterns that may lead to restructuring of the network (e.g., irrelevant peers removed, new relationships created, etc.).