998 resultados para stereoselective synthesis
Resumo:
A new enantioselective Heck-Matsuda desymmetrization reaction was accomplished by using 3-cyclopentenol to produce chiral five-membered 4-aryl cyclopentenol scaffolds in good yields and high ee's, together with some 3-aryl-cyclopentanones as minor products. Mechanistically, the hydroxyl group of 3-cyclopentenol acts as a directing group and is responsible for the cis- arrangement in the formation of the 4-aryl-cyclopentenols.
Resumo:
A convenient, mild and highly stereoselective method for C-glycosidation (alkynylation) of D-glucal with various potassium alkynyltrifluoroborates, mediated by BF(3)center dot OEt(2) and involving oxonium intermediates, preferentially provides the alpha-acetylene glycoside products with good yields.
Resumo:
The stereoselective nucleophilic addition of potassium aryl- and alkynyltrifluoroborates to cyclic N-acyliminium ion derivatives from N-benzyl-3,4,5-triacetoxy-2-pyrrolidinone, affording the respective 5-substituted 2-pyrrolidinone is described. The products were obtained in moderate to good yields and with preference for the syn diastereomer. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Dolastatin units were synthesized from the 1,2-addition reactions of potassium allyl or crotyltrifluoroborate salts to aldehyde derivatives from natural amino acids. The reactions were carried out in presence of a phase-transfer catalyst in a biphasic medium at room temperature and excellent yields (>89-93%) and stereoselective (>90:10 to 98:2) were obtained. The dolastatin units 8 and 14a-b were obtained after three steps in good overall yields (50-62%). (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
(-)-Spicigerolide was enantioselectively synthesized from a protected (S)-lactaldehyde. The synthesis of the polyacetylated framework relied on two Zn-mediated stereoselective additions of alkynes to aldehydes as well as a regiocontrolled [3,3]-sigmatropic rearrangement of an allylic acetate. The pyranone moiety was constructed via ring-closing metathesis.
Resumo:
Compounds containing the pyrrolidine moiety are key substructures of compounds with biological activity and organocatalysts. In particular, annulated chiral pyrrolidines with alpha stereogenic centers have aldostereone synthase inhibition activity. In addition, 5-substituted pyrroloimidazol(in)ium salts precursors to N-heterocyclic carbene (NHC) precatalysts are rare due to a lack of convenient synthetic routes to access them. In this thesis is described a rapid synthesis of NHC precursors and a possible route to 5-substituted pyrroloimidazole biologically active compounds. The method involves the preparation of chiral saturated and achiral unsaturated pyrrolo[I,2- c]imidazol-3-ones from N-Cbz-protected t-Butyl proline carboxamide. The resulting starting materials may be used to prepare the target chiral annulated imidazol(in)ium products by a two-step sequence involving first stereoselective lithiation-substitution, followed by POCh induced salt formation.
Resumo:
This thesis explored the development of several methodologies for the stereoselective construction of ligand frameworks and some of their applications. The first segment concerns the application of an enantioselective lithiation at an Sp3_ hybridized position adjacent to nitrogen by means of the widely used and typically highly effective enantioselective lithiation with ( -)-sparteine. This investigation was intended to develop a method to install chirality into a system that would be converted into a family of diaminoylidenes for use as phosphine mimics in transition metal catalysis or as nucleophilic reagents. Molecular modeling of the system revealed some key interactions between the substrate and (-)-sparteine that provided general insight into the diamine's mode of action and should lend some predictive value to its future applications. The second portion focuses on the development of methods to access 1,2- disubstituted aminoferrocenes, an underexplored class of metallocenes possessing planar chirality. Two routes were examined involving a diastereoselective and an enantioselective pathway, where the latter method made use of the first BF3-mediated lithiation-substitution to install planar chirality. Key derivatives such as 1,2- aminophosphines, made readily accessible by the new route, were evaluated as ligands for Pd(II), Pt(II) and Ir(I). These complexes show activity in a number of transformations with both achiral and prochiral substrates. Optimization experiments were conducted to prepare enantiomerically enriched 2-substituted-I-aminoferrocenes by direct asymmetric lithiation of BF3-coordinated tertiary aminoferrocenes. A predictive computational model describing the transition state of this reaction was developed in collaboration with Professor Travis Dudding's group (Department of Chemistry, Brock University). The predicted stereochemistry of the process was confirmed by single-crystal X-ray analysis of a 2-phosphino-l-dimethylaminoferrocene derivative. Enantiomerically pure samples of the aminophosphine ligands derived from this new process have given promising preliminary results in the enantioselective hydrogenation of prochiral alkenes and warrant further stUdy in metal-mediated catalysis.
Resumo:
The stereoselective syntheses of cis conformationally constrained glutamate and aspartate analogues, containing an azetidine framework were accomplished from (S)-N-tosyl-2-phenylglycine in moderate overall yields. The key steps in these syntheses involved an efficient Wittig olefination of an azetidin-3-one, followed by a highly stereoselective rhodium catalyzed hydrogenation. The route could also be applied to the synthesis of a trans glutamate analogue, since epimerization of cis to trans isomer could be performed using DBU in toluene at reflux. (C) 2008 Elsevier Ltd. All rights reserved.
An epoxide ring-opening approach for a short and stereoselective synthesis of icetexane diterpenoids
Resumo:
A new approach for the synthesis of the core skeleton of icetexane diterpenoids is presented and deals with an epoxide ring-opening reaction by metallated aromatic compounds. Employing this strategy, a short synthesis of an icetexane analogue of brussonol was achieved in just four steps from 2-allyl-cyclohexanone. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The hydroalumination of butylseleno acetylenes with DIBAL-H followed by addition of n-butyllithium generated in situ the (Z)-butylseleno vinyl alanates intermediates which were captured with C(4)H(9)TeBr furnishing the (E)-telluro(seleno)ketene acetals exclusively. The isomers with opposite stereochemistry (Z)-telluro(seleno)ketene acetals were obtained by the reduction of phenylseleno acetylenes with lithium di-(isobutyl)-n-butyl aluminate hydride (Zweifel's reagent) followed by reaction of (E)-phenylseleno vinyl alanates intermediates with C(4)H(9)TeBr. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The total synthesis of 8,9-licarinediols was selectively carried out from licarin A, previously obtained by oxidative coupling of (E)-isoeugenol. The corresponding enantiomerically pure (+)- and(-)-licarin A ester derivatives were subjected to Sharpless oxidation to yield the asymmetric C-8, C-9 dihydroxylation products, whose absolute configurations were established by means of the CD and NMR spectroscopic analyses of their Mosher ester derivatives. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
This article describes the Diels-Alder reaction between methyl thiocinnamates, substituted at the para position by electron-donating and electron-withdrawing groups, with cyclopentadiene in the presence of catechol boron bromide (CBB) as a Lewis acid catalyst. The adduct configuration was confirmed by H-1 NMR coupling constants and single-crystal x-ray diffraction. Total endo stereoselectivity was observed in all reactions and was attributed to the effective secondary interaction between the boron atom and the incipient double bond in the norbonene resulting from the planar geometry of the catalyst. C-13 NMR chemical shifts of the coordinated dienophile carbonyl carbons with CBB compared to those of the non coordinated thiocinammates suggest a strong complexation with the catalyst.
Resumo:
The aim of this thesis was to investigate the synthesis of enantiomerically enriched heterocycles and dehydro-β-amino acid derivatives which can be used as scaffolds or intermediates of biologically active compounds, in particular as novel αvβ3 and α5β1 integrin ligands. The starting materials of all the compounds here synthesized are alkylideneacetoacetates. Alkylidene derivates are very usefull compounds, they are usually used as unsaturated electrophiles and they have the advantage of introducing different kind of functionality that may be further elaborated. In chapter 1, regio- and stereoselective allylic amination of pure carbonates is presented. The reaction proceeds via uncatalyzed or palladium-catalyzed conditions and affords enantiopure dehydro-β-amino esters that are useful precursor of biologically active compounds. Chapter 2 illustrates the synthesis of substituted isoxazolidines and isoxazolines via Michael addition followed by intramolecular hemiketalisation. The investigation on the effect of the Lewis acid catalysis on the regioselectivity of the addition it also reported. Isoxazolidines and isoxazolines are interesting heterocyclic compounds that may be regarded as unusual constrained -amino acids or as furanose mimetics. The synthesis of unusual cyclic amino acids precursors, that may be envisaged as proline analogues, as scaffolds for the design of bioactive peptidomimetics is presented in chapter 3. The synthesis of 2-substituted-3,4-dehydropyrrole derivatives starting from allylic carbonates via a two step allylic amination/ring closing metathesis (RCM) protocol is carried out. The reaction was optimized by testing different Grubbs’ catalysts and carbamate nitrogen protecting groups. Moreover, in view of a future application of these dehydro-β-amino acids as central core of peptidomimetics , the malonate chain was also used to protect nitrogen prior to RCM. Finally, chapter 4 presents the synthesis of two novel different classes of integrin antagonists, one derived from dehydro-β-amino acid prepared as described in chapter 1 and the other one has isoxazolidines synthesized in chapter 2 as rigid constrained core. Since that these compounds are promising RGD mimetics for αvβ3 and α5β1 integrins, they have been submitted to biological assay. and to interpret on a molecular basis their different affinities for the αvβ3 receptor, docking studies were performed using Glide program.