974 resultados para speed reduction
Resumo:
Ground delay programs typically involve the delaying of aircraft that are departing from origin airports within some set distance of a capacity constrained destination airport. Long haul flights are not delayed in this way. A trade-off exists when fixing the distance parameter: increasing the ‘scope’ distributes delay among more aircraft and may reduce airborne holding delay but could also result in unnecessary delay in the (frequently observed) case of early program cancellation. In order to overcome part of this drawback, a fuel based cruise speed reduction strategy aimed at realizing airborne delay, was suggested by the authors in previous publications. By flying slower, at a specific speed, aircraft that are airborne can recover part of their initially assigned delay without incurring extra fuel consumption if the ground delay program is canceled before planned. In this paper, the effect of the scope of the program is assessed when applying this strategy. A case study is presented by analyzing all the ground delay programs that took place at San Francisco, Newark Liberty and Chicago O’Hare International airports during one year. Results show that by the introduction of this technique it is possible to define larger scopes, partially reducing the amount of unrecovered delay.
Resumo:
Ground Delay Programs (GDP) are sometimes cancelled before their initial planned duration and for this reason aircraft are delayed when it is no longer needed. Recovering this delay usually leads to extra fuel consumption, since the aircraft will typically depart after having absorbed on ground their assigned delay and, therefore, they will need to cruise at more fuel consuming speeds. Past research has proposed speed reduction strategy aiming at splitting the GDP-assigned delay between ground and airborne delay, while using the same fuel as in nominal conditions. Being airborne earlier, an aircraft can speed up to nominal cruise speed and recover part of the GDP delay without incurring extra fuel consumption if the GDP is cancelled earlier than planned. In this paper, all GDP initiatives that occurred in San Francisco International Airport during 2006 are studied and characterised by a K-means algorithm into three different clusters. The centroids for these three clusters have been used to simulate three different GDPs at the airport by using a realistic set of inbound traffic and the Future Air Traffic Management Concepts Evaluation Tool (FACET). The amount of delay that can be recovered using this cruise speed reduction technique, as a function of the GDP cancellation time, has been computed and compared with the delay recovered with the current concept of operations. Simulations have been conducted in calm wind situation and without considering a radius of exemption. Results indicate that when aircraft depart early and fly at the slower speed they can recover additional delays, compared to current operations where all delays are absorbed prior to take-off, in the event the GDP cancels early. There is a variability of extra delay recovered, being more significant, in relative terms, for those GDPs with a relatively low amount of demand exceeding the airport capacity.
Resumo:
En route speed reduction can be used for air traffic flow management (ATFM), e.g., delaying aircraft while airborne or realizing metering at an arrival fix. In previous publications, the authors identified the flight conditions that maximize the airborne delay without incurring extra fuel consumption with respect to the nominal (not delayed) flight. In this paper, the effect of wind on this strategy is studied, and the sensitivity to wind forecast errors is also assessed. A case study done in Chicago O’Hare airport (ORD) is presented, showing that wind has a significant effect on the airborne delay that can be realized and that, in some cases, even tailwinds might lead to an increase in the maximum amount of airborne delay. The values of airborne delay are representative enough to suggest that this speed reduction technique might be useful in a real operational scenario. Moreover, the speed reduction strategy is more robust than nominal operations against fuel consumption in the presence of wind forecast uncertainties.
Resumo:
This paper proposes an en route speed reduction to complement current ground delay practices in air traffic flow management. Given a nominal cruise speed, there exists a bounded range of speeds that allows aircraft to fly slower with the same or lower fuel consumption than the nominal flight. Therefore, flight times are increased and delay can be partially performed in the air, at no extra fuel cost for the operator. This concept has been analyzed in an initial feasibility study, computing the maximum amount of delay that can be performed in the air in some representative flights. The impact on fuel consumption has been analyzed, and two scenarios are proposed: the flight fuel remains the same as in the nominal flight, and some extra fuel allowance is permitted in order to face uncertainties. Results show significant values of airborne delay that may be useful in many situations, with the exception of short hauls where airborne delay may be too short. If cruise altitude is changed, the amount of airborne delay increases, since changes in cruise speed modify the optimal flight altitudes. From the analyzed flights, a linear dependency is found relating the airborne delay with the amount of extra fuel allowance.
Resumo:
Noncompliance with speed limits is one of the major safety concerns in roadwork zones. Although numerous studies have attempted to evaluate the effectiveness of safety measures on speed limit compliance, many report inconsistent findings. This paper aims to review the effectiveness of four categories of roadwork zone speed control measures: Informational, Physical, Enforcement, and Educational measures. While informational measures (static signage, variable message signage) evidently have small to moderate effects on speed reduction, physical measures (rumble strips, optical speed bars) are found ineffective for transient and moving work zones. Enforcement measures (speed camera, police presence) have the greatest effects, while educational measures also have significant potential to improve public awareness of roadworker safety and to encourage slower speeds in work zones. Inadequate public understanding of roadwork risks and hazards, failure to notice signs, and poor appreciation of safety measures are the major causes of noncompliance with speed limits.
Resumo:
Poor compliance with speed limits is a serious safety concern at roadworks. While considerable research has been undertaken worldwide to understand drivers’ speeding behaviour at roadworks and to identify treatments for improving compliance with speed limits, little is known about the speeding behaviour of drivers at Australian roadworks and how their compliance rates with speed limits could be improved. This paper presents findings from two Queensland studies targeted at 1) examining drivers’ speed profiles at three long-term roadwork sites, and 2) understanding the effectiveness of speed control treatments at roadworks. The first study analysed driver speeds at various locations in the sites using a Tobit regression model. Results show that the probability of speeding was higher for light vehicles and their followers, for leaders of platoons with larger front gaps, during late afternoon and early morning, when higher proportions of surrounding vehicles were speeding, and at the upstream of work areas. The second study provided a comprehensive understanding of the effectiveness of various speed control treatments used at roadworks by undertaking a critical review of the literature. Results showed that enforcement has the greatest effects on reducing speeds among all treatments, while the roadwork signage and information-related treatments have small to moderate effects on speed reduction. Findings from the studies have potential for designing programs to effectively improve speed limit compliance at Australian roadworks.
Resumo:
Many researchers have demonstrated the applicability of the Theory of Planned Behaviour (TPB) in predicting both intention to speed and actual speeding behaviour. However, there remain shortcomings in the explanatory power of the TPB, with research suggesting that even when drivers had reported an intention to not speed approximately 25% of drivers report behaviour that does not align with their intentions (i.e., they engaged in speeding, Elliott & Armitage, 2006). This research explores the role of a novel and promising construct, mindfulness, in enhancing the explanatory utility of the TPB for the understanding of drivers’ speeding behaviour in school zones. Mindfulness is a concept which has been widely used in studies of consciousness, but has recently been applied to the understanding of behaviour in other areas, including clinical psychology, physical activity, education and business. It has been suggested that mindfulness can also be applied to road safety, though its application within this context currently remains limited. This study was based on an e-survey of the general driving public (N=240). Overall, the results identified mindfulness as a construct which may aid understanding of the relationship between drivers’ intentions and behaviour. Theoretically, the findings may have implications in terms of identifying mindfulness as an additional explanatory construct within a TPB framework. In road safety practice, the findings suggest that efficacious countermeasures around school zones may be those that function to heighten drivers’ mindfulness, such as flashing lights and physical speed reduction measures.
Resumo:
At present, for mechanical power transmission, Cycloidal drives are most preferred - for compact, high transmission ratio speed reduction, especially for robot joints and manipulator applications. Research on drive-train dynamics of Cycloidal drives is not well-established. This paper presents a testing rig for Cycloidal drives, which would produce data for development of mathematical models and investigation of drive-train dynamics, further aiding in optimising its design
Resumo:
Pilot cars are used in one-lane two-way work zones to guide traffic and keep their speeds within posted limits. While many studies have examined the effectiveness of measures to reduce vehicle speeds in work zones, little is known about the reductions achievable through the use of pilot cars. This paper examines the effectiveness of a pilot car in reducing travel speeds in a rural highway work zone in Queensland, Australia. Analysis of speed data covering a period of five days showed that a pilot car reduced average speeds at the treatment location, but not downstream. The proportion of vehicles speeding through the activity area was also reduced, particularly those traveling at 10 km/h or more above the posted limit. Motorists were more likely to speed during the day, under a 40 kh/h limit, when traffic volumes were higher and when there were fewer vehicles in the traffic stream. Medium vehicles were less likely to speed in the presence of a pilot car than light vehicles. To maximize these benefits, it is necessary to ensure that the pilot car itself is not speeding.
Resumo:
Transition zones between bridge decks and rail tracks suffer early failure due to poor interaction between rail vehicles and sudden changes of stiffness. This has been an ongoing problem to rail industry and yet still no systematic studies appear to have been taken to maintain a gradually smoothening transmission of forces between the bridge and its approach. Differential settlement between the bridge deck and rail track in the transition zone is the fundamental issue, which negatively impacts the rail industry by causing passenger discomfort, early damage to infrastructure and vehicle components, speed reduction, and frequent maintenance cycles. Identification of mechanism of the track degradation and factors affecting is imperative to design any mitigation method for reducing track degradation rate at the bridge transition zone. Unfortunately this issue is still not well understood, after conducting a numbers of reviews to evaluate the key causes, and introducing a wide range of mitigation techniques. In this study, a comprehensive analysis of the available literature has been carried out to develop either a novel design framework or a mitigation technique for the bridge transition zone. This paper addresses three critical questions in relation to the track degradation at transition zone: (1) what are the causes of bridge transition track degradation?; (2) what are the available mitigation techniques in reducing the track degradation rate?; (3) what are the factors affecting on poor performance of the existing mitigation techniques?. It is found that the absence of soil-water response, dynamic loading response, and behaviour of geotechnical characteristics under long-term conditions in existing track transition design frameworks critically influence on the failures of existing mitigation techniques. This paper also evaluates some of the existing design frameworks to identify how each design framework addresses the track degradation at the bridge transition zone.
Resumo:
Roundabouts reduce the frequency and severity of motor vehicle crashes and therefore the number installed has increased dramatically in the last 20 years in many countries. However, the safety impacts of roundabouts for bicycle riders are a source of concern, with many studies reporting lower injury reductions for cyclists than car occupants. This paper summarises the results of a project undertaken to provide guidance on how cyclist safety could be improved at existing roundabouts in Queensland, Australia, where cyclist crashes have been increasing and legislation gives motor vehicles priority over cyclists and pedestrians at roundabouts. The review of international roundabout design guidelines identified two schools of design: tangential roundabouts (common in English-speaking countries, including Australia), which focus on minimising delay to motor vehicles, and radial roundabouts (common in continental Europe), which focus on speed reduction and safety. While it might be expected that radial roundabouts would be safer for cyclists, there have been no studies to confirm this view. Most guidelines expect cyclists to act as vehicle traffic in single-lane, typically low-speed, roundabouts. Some jurisdictions do not permit cyclists to travel on multi-lane roundabouts, and recommend segregated bicycle facilities because of their lowest crash risk for cyclists. Given that most bicycle-vehicle crashes at roundabouts involve an entering vehicle and a circulating cyclist, the greatest challenges appear to be reducing the speed of motor vehicles on the approach/entry to roundabouts and other ways of maximizing the likelihood that cyclists will be seen. Lower entry speeds are likely to underpin the greater safety of compact roundabouts for cyclists and, conversely, the higher than expected crash rates at two-lane roundabouts. European research discourages the use of bike lanes in roundabouts which position cyclists at the edge of the road and contributes to cyclists being less likely to be noticed by drivers.
Resumo:
A major 3-year research project to improve safety at roadworks has recently been completed by the Centre for Accident Research and Road Safety – Queensland (CARRS-Q) and industry partners. This project involved developing strategies to mitigate roadwork hazards including speeding. This paper presents three on-road evaluation studies on the effectiveness of some current and new safety treatments: use of pilot vehicles, variable message signage (VMS), police enforcement with and without VMS, and remote-controlled traffic control devices. The speed reduction potential of pilot vehicles was evaluated at a highway site. Results showed that pilot vehicles reduced average speeds within the work area, but not at a downstream location. Combinations of VMS and police enforcement were evaluated at a motorway site and results showed that police enforcement accompanied with VMS had greater effects on reducing speeds than either of these treatments alone. Three new remote-controlled traffic control devices—red and amber lights, red light and amber arrow, and a robotic stop/slow sign—were evaluated at a highway site. Results showed that the red light and amber arrow option produced consistent effects on the speeds at the approach to traffic controls and at a location inside the work area. This paper presents the first rigorous evaluations of these roadwork safety treatments in Queensland.
Resumo:
The relationship between speed and crashes has been well established in the literature, with the consequence that speed reduction through enforced or other means should lead to a reduction in crashes. The extent to which the public regard speeding as a problem that requires enforcement is less clear. Analysis was conducted on public perceptions of antisocial behaviors including speeding traffic. The data was collected as part of the British Crime Survey, a face-to-face interview with UK residents on issues relating to crime. The antisocial behavior section required participants to state the degree to which they perceived 16 antisocial behaviors to be a problem in their area. Results revealed that speeding traffic was perceived as the greatest problem in local communities, regardless of whether respondents were male or female, young, middle aged, or old. The rating of speeding traffic as the greatest problem in the community was replicated in a second, smaller postal survey, where respondents also provided strong support for enforcement on residential roads, and indicated that traveling immediately above the speed limit on residential roads was unacceptable. Results are discussed in relation to practical implications for speed enforcement, and the prioritization of limited police resources. (c) 2006 Elsevier Ltd. All rights reserved.