1000 resultados para sound synthesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Excitation-continuous music instrument control patterns are often not explicitly represented in current sound synthesis techniques when applied to automatic performance. Both physical model-based and sample-based synthesis paradigmswould benefit from a flexible and accurate instrument control model, enabling the improvement of naturalness and realism. Wepresent a framework for modeling bowing control parameters inviolin performance. Nearly non-intrusive sensing techniques allow for accurate acquisition of relevant timbre-related bowing control parameter signals.We model the temporal contour of bow velocity, bow pressing force, and bow-bridge distance as sequences of short Bézier cubic curve segments. Considering different articulations, dynamics, and performance contexts, a number of note classes are defined. Contours of bowing parameters in a performance database are analyzed at note-level by following a predefined grammar that dictates characteristics of curve segment sequences for each of the classes in consideration. As a result, contour analysis of bowing parameters of each note yields an optimal representation vector that is sufficient for reconstructing original contours with significant fidelity. From the resulting representation vectors, we construct a statistical model based on Gaussian mixtures suitable for both the analysis and synthesis of bowing parameter contours. By using the estimated models, synthetic contours can be generated through a bow planning algorithm able to reproduce possible constraints caused by the finite length of the bow. Rendered contours are successfully used in two preliminary synthesis frameworks: digital waveguide-based bowed stringphysical modeling and sample-based spectral-domain synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a framework in which samples of bowing gesture parameters are retrieved and concatenated from a database of violin performances by attending to an annotated input score. Resulting bowing parameter signals are then used to synthesize sound by means of both a digital waveguide violin physical model, and an spectral-domainadditive synthesizer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the evaluation of morpheme a sketching interface for the control of sound synthesis. We explain the task that was designed in order to assess the effectiveness of the interface, detect usability issues and gather participants’ responses regarding cognitive, experiential and expressive aspects of the interaction. The evaluation comprises a design task, where partici-pants were asked to design two soundscapes using the morpheme interface for two video footages. Responses were gathered using a series of likert type and open-ended questions. The analysis of the data gathered revealed a number of usability issues, however the performance of morpheme was satisfactory and participants recognised the creative potential of the interface and the synthesis methods for sound design applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Report for the scientific sojourn at the Stanford University from January until June 2007. Music is well known for affecting human emotional states, yet the relationship between specific musical parameters and emotional responses is still not clear. With the advent of new human-computer interaction (HCI) technologies, it is now possible to derive emotion-related information from physiological data and use it as an input to interactive music systems. Providing such implicit musical HCI will be highly relevant for a number of applications including music therapy, diagnosis, nteractive gaming, and physiologically-based musical instruments. A key question in such physiology-based compositions is how sound synthesis parameters can be mapped to emotional states of valence and arousal. We used both verbal and heart rate responses to evaluate the affective power of five musical parameters. Our results show that a significant correlation exists between heart rate and the subjective evaluation of well-defined musical parameters. Brightness and loudness showed to be arousing parameters on subjective scale while harmonicity and even partial attenuation factor resulted in heart rate changes typically associated to valence. This demonstrates that a rational approach to designing emotion-driven music systems for our public installations and music therapy applications is possible.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Physics-based synthesis of tanpura drones requires accurate simulation of stiff, lossy string vibrations while incorporating sustained contact with the bridge and a cotton thread. Several challenges arise from this when seeking efficient and stable algorithms for real-time sound synthesis. The approach proposed here to address these combines modal expansion of the string dynamics with strategic simplifications regarding the string-bridge and string-thread contact, resulting in an efficient and provably stable time-stepping scheme with exact modal parameters. Attention is given also to the physical characterisation of the system, including string damping behaviour, body radiation characteristics, and determination of appropriate contact parameters. Simulation results are presented exemplifying the key features of the model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Musiikkiteknologia on laaja soveltava tieteenala, jota voidaan hyödyntää kasvatustieteissä, psykologiassa ja kognitiivisissa tieteissä. Musiikkilaitteet ja ohjelmistot hyödyntävät tietotekniikkaa. Musiikkiteknologian ohjelmat ovat joko kaupallisia tai pohjautuvat avoimen lähdekoodin ajatteluun. Tässä työssä kartoitin Linuxin avoimen lähdekoodin virtuaaliinstrumentit sekä toteutin rumpukoneen, kosketinsoittimen ja yksinkertaisen karaokeohjelman mobiilille laitteelle. Tehty työ osoittaa, että tietoteknisin keinoin voidaan toteuttaa tutkimushankkeissa hyödynnettäviä musiikkiteknologian ohjelmia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of numerical simulation in the design and evaluation of products performance is ever increasing. To a greater extent, such estimates are needed in a early design stage, when physical prototypes are not available. When dealing with vibro-acoustic models, known to be computationally expensive, a question remains, which is related to the accuracy of such models in view of the well-know variability inherent to the mass manufacturing production techniques. In addition, both academia and industry have recently realized the importance of actually listening to a products sound, either by measurements or by virtual sound synthesis, in order to assess its performance. In this work, the scatter of significant parameter variations on a simplified vehicle vibro-acoustic model is calculated on loudness metrics using Monte Carlo analysis. The mapping from the system parameters to sound quality metric is performed by a fully-coupled vibro-acoustic finite element model. Different loudness metrics are used, including overall sound pressure level expressed in dB and Specific Loudness in Sones. Sound quality equivalent sources are used to excite this model and the sound pressure level at the driver's head position is acquired to be evaluated according to sound quality metrics. No significant variation has been perceived when evaluating the system using regular sound pressure level expressed in in dB and dB(A). This happens because of the third-octave filters that averages the results under some frequency bands. On the other hand, Zwicker Loudness presents important variations, arguably, due to the masking effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Impactive contact between a vibrating string and a barrier is a strongly nonlinear phenomenon that presents several challenges in the design of numerical models for simulation and sound synthesis of musical string instruments. These are addressed here by applying Hamiltonian methods to incorporate distributed contact forces into a modal framework for discrete-time simulation of the dynamics of a stiff, damped string. The resulting algorithms have spectral accuracy, are unconditionally stable, and require solving a multivariate nonlinear equation that is guaranteed to have a unique solution. Exemplifying results are presented and discussed in terms of accuracy, convergence, and spurious high-frequency oscillations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a tool to improve vocal tuning in Android devices is presented. This application aims to offer exercises to practice and improve singing skills. The designed tool includes two main functionalities: sound synthesis, to provide with singing sound references, and fundamental frequency analysis, to analize the sound and check if the user sings the right musical note. The well-known Yin algorithm has been selected to perform the fundamental frequency analysis. Three different singing exercises are included: sing single notes, sing intervals and sing a note in order to complete a chord. The system also includes a graphical interface in which musical notation is employed to write down the singing sound. The system has been evaluated in order to test out its correct performance regarding both the analysis and synthesis of musical sounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many sonification systems face a number of common design challenges. These are addressed in every project with different, specific-purpose solutions. We present Panson – an interactive sonification framework implemented in Python that can ease the development of sonification systems. Panson allows the user to implement sonifications using the sc3nb library as interface to the SuperCollider sound synthesis engine. The framework provides support for both offline and online (real-time) sonification through a set of composable classes; these classes are designed to natively support interaction in Jupyter Notebooks. Using Panson, we will show an example of its application by implementing a facial expression sonification Jupyter Notebook based on OpenFace 2.0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the PhD thesis “Sound Texture Modeling” we deal with statistical modelling or textural sounds like water, wind, rain, etc. For synthesis and classification. Our initial model is based on a wavelet tree signal decomposition and the modeling of the resulting sequence by means of a parametric probabilistic model, that can be situated within the family of models trainable via expectation maximization (hidden Markov tree model ). Our model is able to capture key characteristics of the source textures (water, rain, fire, applause, crowd chatter ), and faithfully reproduces some of the sound classes. In terms of a more general taxonomy of natural events proposed by Graver, we worked on models for natural event classification and segmentation. While the event labels comprise physical interactions between materials that do not have textural propierties in their enterity, those segmentation models can help in identifying textural portions of an audio recording useful for analysis and resynthesis. Following our work on concatenative synthesis of musical instruments, we have developed a pattern-based synthesis system, that allows to sonically explore a database of units by means of their representation in a perceptual feature space. Concatenative syntyhesis with “molecules” built from sparse atomic representations also allows capture low-level correlations in perceptual audio features, while facilitating the manipulation of textural sounds based on their physical and perceptual properties. We have approached the problem of sound texture modelling for synthesis from different directions, namely a low-level signal-theoretic point of view through a wavelet transform, and a more high-level point of view driven by perceptual audio features in the concatenative synthesis setting. The developed framework provides unified approach to the high-quality resynthesis of natural texture sounds. Our research is embedded within the Metaverse 1 European project (2008-2011), where our models are contributting as low level building blocks within a semi-automated soundscape generation system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we describe an approach to the expressive synthesis of jazz saxophone melodies that reuses audio recordings and carefully concatenates note samples. The aim is to generate an expressive audio sequence from the analysis of an arbitrary input score using a previously induced performance model and an annotated saxophone note database extracted from real performances. We push the idea of using the same corpus for both inducing an expressive performance model and synthesizing sound by concatenating samples in the corpus. Therefore, a connection between the performers’ instrument sound and performance characteristics is kept during the synthesis process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macrofossil analysis of a composite 19 m long sediment core from Rano Raraku Lake (Easter Island)was related to litho-sedimentary and geochemical features of the sediment. Strong stratigraphical patterns are shown by indirect gradient analyses of the data. The good correspondence between the stratigraphical patterns derived from macrofossil (Correspondence Analysis) and sedimentary and geochemical data (Principal Component Analysis) shows that macrofossil associations provide sound palaeolimnological information in conjunction with sedimentary data. The main taphonomic factors in fluencing the macrofossil assemblages are run-off from the catchment, the littoral plant belt, and the depositional environment within the basin. Five main stages during the last 34,000 calibrated years BP (cal yr BP) are characterised from the lithological, geochemical, and macrofossil data. From 34 to 14.6 cal kyr BP (last glacial period) the sediments were largely derived from the catchment, indicating a high energy lake environment with much erosion and run-off bringing abundant plant trichomes, lichens, and mosses into the centre of Raraku Lake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For enhanced immersion into a virtual scene more than just the visual sense should be addressed by a Virtual Reality system. Additional auditory stimulation appears to have much potential, as it realizes a multisensory system. This is especially useful when the user does not have to wear any additional hardware, e.g., headphones. Creating a virtual sound scene with spatially distributed sources requires a technique for adding spatial cues to audio signals and an appropriate reproduction. In this paper we present a real-time audio rendering system that combines dynamic crosstalk cancellation and multi-track binaural synthesis for virtual acoustical imaging. This provides the possibility of simulating spatially distributed sources and, in addition to that, near-to-head sources for a freely moving listener in room-mounted virtual environments without using any headphones. A special focus will be put on near-to-head acoustics, and requirements in respect of the head-related transfer function databases are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The introduction of open-plan offices in the 1960s with the intent of making the workplace more flexible, efficient, and team-oriented resulted in a higher noise floor level, which not only made concentrated work more difficult, but also caused physiological problems, such as increased stress, in addition to a loss of speech privacy. Irrelevant background human speech, in particular, has proven to be a major factor in disrupting concentration and lowering performance. Therefore, reducing the intelligibility of speech and has been a goal of increasing importance in recent years. One method employed to do so is the use of masking noises, which consists in emitting a continuous noise signal over a loudspeaker system that conceals the perturbing speech. Studies have shown that while effective, the maskers employed to date – normally filtered pink noise – are generally poorly accepted by users. The collaborative "Private Workspace" project, within the scope of which this thesis was carried out, attempts to develop a coupled, adaptive noise masking system along with a physical structure to be used for open-plan offices so as to combat these issues. There is evidence to suggest that nature sounds might be more accepted as masker, in part because they can have a visual object that acts as the source for the sound. Direct audio recordings are not recommended for various reasons, and thus the nature sounds must be synthesized. This work done consists of the synthesis of a sound texture to be used as a masker as well as its evaluation. The sound texture is composed of two parts: a wind-like noise synthesized with subtractive synthesis, and a leaf-like noise synthesized through granular synthesis. Different combinations of these two noises produced five variations of the masker, which were evaluated at different levels along with white noise and pink noise using a modified version of an Oldenburger Satztest to test for an affect on speech intelligibility and a questionnaire to asses its subjective acceptance. The goal was to find which of the synthesized noises works best as a speech masker. This thesis first uses a theoretical introduction to establish the basics of sound perception, psychoacoustic masking, and sound texture synthesis. The design of each of the noises, as well as their respective implementations in MATLAB, is explained, followed by the procedures used to evaluate the maskers. The results obtained in the evaluation are analyzed. Lastly, conclusions are drawn and future work is and modifications to the masker are proposed. RESUMEN. La introducción de las oficinas abiertas en los años 60 tenía como objeto flexibilizar el ambiente laboral, hacerlo más eficiente y que estuviera más orientado al trabajo en equipo. Como consecuencia, subió el nivel de ruido de fondo, que no sólo dificulta la concentración, sino que causa problemas fisiológicos, como el aumento del estrés, además de reducir la privacidad. Hay estudios que prueban que las conversaciones de fondo en particular tienen un efecto negativo en el nivel de concentración y disminuyen el rendimiento de los trabajadores. Por lo tanto, reducir la inteligibilidad del habla es uno de los principales objetivos en la actualidad. Un método empleado para hacerlo ha sido el uso de ruido enmascarante, que consiste en reproducir señales continuas de ruido a través de un sistema de altavoces que enmascare el habla. Aunque diversos estudios demuestran que es un método eficaz, los ruidos utilizados hasta la fecha (normalmente ruido rosa filtrado), no son muy bien aceptados por los usuarios. El proyecto colaborativo "Private Workspace", dentro del cual se engloba el trabajo realizado en este Proyecto Fin de Grado, tiene por objeto desarrollar un sistema de ruido enmascarador acoplado y adaptativo, además de una estructura física, para su uso en oficinas abiertas con el fin de combatir los problemas descritos anteriormente. Existen indicios de que los sonidos naturales son mejor aceptados, en parte porque pueden tener una estructura física que simule ser la fuente de los mismos. La utilización de grabaciones directas de estos sonidos no está recomendada por varios motivos, y por lo tanto los sonidos naturales deben ser sintetizados. El presente trabajo consiste en la síntesis de una textura de sonido (en inglés sound texture) para ser usada como ruido enmascarador, además de su evaluación. La textura está compuesta de dos partes: un sonido de viento sintetizado mediante síntesis sustractiva y un sonido de hojas sintetizado mediante síntesis granular. Diferentes combinaciones de estos dos sonidos producen cinco variaciones de ruido enmascarador. Estos cinco ruidos han sido evaluados a diferentes niveles, junto con ruido blanco y ruido rosa, mediante una versión modificada de un Oldenburger Satztest para comprobar cómo afectan a la inteligibilidad del habla, y mediante un cuestionario para una evaluación subjetiva de su aceptación. El objetivo era encontrar qué ruido de los que se han sintetizado funciona mejor como enmascarador del habla. El proyecto consiste en una introducción teórica que establece las bases de la percepción del sonido, el enmascaramiento psicoacústico, y la síntesis de texturas de sonido. Se explica a continuación el diseño de cada uno de los ruidos, así como su implementación en MATLAB. Posteriormente se detallan los procedimientos empleados para evaluarlos. Los resultados obtenidos se analizan y se extraen conclusiones. Por último, se propone un posible trabajo futuro y mejoras al ruido sintetizado.