974 resultados para slow highly charged ions
Resumo:
Size modification of Au nanoparticles (NPs), deposited on the Au-thick film surface and irradiated by slow highly charged ions (SHCI) 40Arq+ (3 6 q 6 12) with fixed low dose of 4.3 1011 ions/cm2 and various energy ranging from 74.64 to 290.64 keV at room temperature (293.15 K), was investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The effect of projectile kinetic energy on the modified size of NPs was explored by an appropriate choice of the fixed process parameters such as ion flux, irradiation temperature, incident angle, irradiation time, etc. The morphological changes of NPs were interpreted by models involving collisional mixing, Ostwald ripening (OR) and inverse Ostwald ripening (IOR) of spherical NPs on a substrate. A critical kinetic energy as well as a critical potential energy of the projectile in the Au NPs size modification process were observed.
Resumo:
The electron emission yields from the interaction of slow highly charged ions (SHCI) He2+, O2+ and Ne2+ with clean Si surface are measured separately. It is found that electron emission yield gamma increases proportionally to projectile kinetic energy E-p/M-p, ranging from 0.75 keV/u to 10.5 keV/u (i.e. 3.8 x 10(5) m/s <= v(p) <= 1.42 x 10(6) m/s), and it is higher for heavy ions (O2+ and Ne2+) than for light ion (He2+). For O2+ and Ne2+, gamma increases with Z(p) decreasing in our energy range, and it shows quite different from the result for higher projectile kinetic energy. After calculating the stopping power by using TRIM 2006, it is found that the fraction of secondary electrons induced by recoil atoms increases significantly at lower projectile energy, thereby leads to the differences in gamma for heavy ions O2+ and Ne2+ between lower and higher projectile kinetic energy.
Resumo:
在兰州重离子加速器国家实验室电子回旋共振离子源高电荷态原子物理实验平台上,用低能(0.75keV/u≤EP/MP≤10.5keV/u,即3.8×105m/s≤vP≤1.42×106m/s)He2+,O2+和Ne2+离子束正入射到自清洁Si表面时二次电子发射产额的实验结果.结果表明电子发射产额γ近似正比于入射离子动能EP/MP.在相同动能下,γ(O)>γ(Ne)>γ(He),对于原子序数ZP比较大的O2+和Ne2+离子,ZP大者反而γ小,这与较高入射能量时的结果截然不同.通过计算不同入射能量下入射离子的阻止能损S,发现反冲原子对激发二次电子的作用随入射离子能量的降低显著增大,这正是导致在较低能量范围内二次电子发射产额与较高入射能量时存在差异的主要原因.
Resumo:
We utilize slow highly charged ions of Xeq+ and Pbq+ to irradiate GaN crystal films grown on sapphire substrate, and use X-ray photoelectron spectroscopy to analyze its surface chemical composition and chemical state of the elements. The results show that highly charged ions can etch the sample surface obviously, and the GaN sample irradiated by highly charged ions has N depletion or is Ga rich on its surface. Besides, the relative content of Ga-Ga bond increases as the dose and charge state of the incident ions increase. In addition, the binding energy of Ga 3d(5/2) electrons corresponding to Ga-Ga bond of the irradiated GaN sample is smaller compared with that of the Ga bulk material. This can be attributed to the lattice damage, which shifts the binding energy of inner orbital electrons to the lower end.
Resumo:
利用低速高电荷态Xeq+和Pbq+离子对在蓝宝石衬底上生长的GaN晶体膜样品进行辐照,并利用X射线光电子能谱(XPS)对样品表面化学组成和元素化合态进行了分析.结果表明,高电荷态离子对样品表面有显著的刻蚀作用;经高电荷态离子辐照的GaN样品表面氮元素贫乏而镓元素富集;随着入射离子剂量和所携带电荷数的增大,Ga—Ga键相对含量增大;辐照后,GaN样品中Ga—Ga键对应的Ga3d5/2电子的束缚能偏小,晶格损伤使内层轨道电子束缚能向低端方向偏移.
Resumo:
The. total electron emission yields following the interaction of slow highly charged ions (SHCI) O4+ with different material surfaces (W, Au, Si and SiO2) have been measured. It is found that the electron emission yield gamma increases proportionally with the projectile velocity v ranging from 5.36 x 10(5)m/s to 10.7 x 10(5)m/s. The total emission yield is dependent on the target materials, and it turns out to follow the relationship gamma(Au) > gamma(Si)> gamma(W). The result shows that the electron emission yields are mainly determined by the electron stopping power of the target when the projectile potential energy is taken as a constant, which is in good agreement with the former studies
Resumo:
The L-shell x-ray yields of Zr and Mo bombarded by slow Ar16+ ions are measured. The energy of the Ar16+ ions ranges from about 150keV to 350keV. The L-shell x-ray production cross sections of Zr and Mo are extracted from these yields data. The explanation of these experimental results is in the framework of the adiabatic directionization and the binding energy modified BEA approximation. We consider, in the slow asymmetric collisions such as Ar and Mo/Zr, the transient united atoms (UA) are formed during the ion-surface interaction and the direct-ionization is the main mechanism for the inner-shell vacancy production. Generally, the theoretical results are in good agreement with the experimental data.
Resumo:
The X-ray spectra of Nb surface induced by Arq+ (q = 16,17) ions with the energy range from 10 to 20 keV/q were studied by the optical spectrum technology. The experimental results indicate that the multi-electron excitation occurred as a highly charged Ar16+ ion was neutralized below the metal surface. The K shell electron of Ar16+ was excited and then de-excited cascadly to emit K X-ray. The intensity of the X-ray emitted from K shell of the hollow Ar atom decreased with the increase of projectile kinetic energy. The intensity of the X-ray emitted from L shell of the target atom Nb increased with the increase of projectile kinetic energy. The X-ray yield of Ar17+ is three magnitude orders larger than that of Ar16+.
Resumo:
Angular distribution and current dependence of the transmitted ion fraction are investigated for 40 keV Xe7+ bombarding on polycarbonate (PC) nanocapillaries. By measuring the angular distribution of the transmitted ion fraction, a strong guiding efect is found in PC nanocapillaries. Furthermore, with increase of the incident current, a turning point of the transmitted ion fraction is found, which is explained qualitatively by the discharge capacity of the nanocapillaries.