945 resultados para single-cell gel (comet) assay
Resumo:
Dental bleaching is a simple and conservative procedure for aesthetic restoration of vital discoloured teeth. However, dental bleaching agents may represent a hazard to human health, especially by causing DNA strand breaks. Genotoxicity tests form an important part of cancer research and risk assessment of potential carcinogens. In the current study, the genotoxic potential associated with exposure to dental bleaching agents was assessed by the single cell gel (comet) assay in vitro. Six commercial dental bleaching agents (Clarigel Gold - Dentsply; Whitespeed - Discus Dental; Nite White - Discus Dental; Magic Bleaching - Vigodent; Whiteness HP - FGM and Lase Peroxide - DMC) were exposed to mouse lymphoma cells in vitro. The results pointed out that all dental bleaching agents tested contributed to the DNA damage as depicted by the mean tail moment. Clear concentration-related effects were obtained for DNA damaging, being the strongest effect observed at the highest dose of the hydrogen peroxide (Whiteness HP and Lase Peroxide, at 35% concentration). on the contrary, Whitespeed (Discus Dental) induced the lowest level of DNA breakage. Taken together, these results suggest that dental bleaching agents may be a factor that increases the level of DNA damage as detected by the single cell gel (comet) assay.
Resumo:
Objective. In the current study, the potential DNA damage associated with exposure to a number of antimicrobial endodontic compounds was assessed by the single cell gel (comet) assay in vitro.Study design. Chinese hamster ovary (CHO) cells were exposed to formocresol, paramonochlorophenol, calcium hydroxide, or chlorhexidine at final concentration ranging from 0.01% to 1%.Results. Formocresol, paramonochlorophenol, and calcium hydroxide, as well as chlorhexidine in all concentrations tested did not contribute to the DNA damage.Conclusion. These findings are clinically relevant since they represent an important contribution to the correct evaluation of the potential health risk associated with exposure to dental agents.
Resumo:
A protocol for DNA damage assessment by the single-cell gel (SCG)/comet assay in human urinary bladder washing cells was established. Modifications of the standard alkaline protocol included an increase to 2% of sodium sarcosinate in the lysis solution, a reduction in the glass-slide area for comet analysis, and a cutoff value for comet head diameter of at least 30 mum, to exclude contaminating leukocytes. Distinguishing cell populations is crucial, because significant differential migration was demonstrated for transitional and nontransitional cells, phenomena that may confound the results. When applying the modified protocol to urinary bladder cells from smokers without urinary bladder neoplasia, it was possible to detect a significant (P = 0.03) increase in DNA damage as depicted by the tail moment (6.39 +/- 3.23; mean 95% confidence interval; n = 18) when compared with nonsmokers (1.94 +/- 1.41; n = 12). No significant differences were observed between ex-smokers and current smokers regarding comet parameters. Inflammation was not a confounding factor, but DNA migration increased significantly with age in nonsmokers (r = 0.68; P = 0.014). Thus, age matching should be a concern when transitional cells are analyzed in the SCG assay. As it is well known, DNA damage may trigger genomic instability, a crucial step in carcinogenesis. Therefore, the present data directly support the classification of individuals with smoking history as patients at high risk for urinary bladder cancer.
Resumo:
Fluoride has widely been used in Dentistry because it is a specific and effective caries prophylactic agent. However, excess fluoride may represent a hazard to human health, especially by causing injury on genetic apparatus. Genotoxicity tests constitute an important part of cancer research for risk assessment of potential carcinogens. In this study, the potential DNA damage associated with exposure to fluoride was assessed by the single cell gel (comet) assay in vitro. Mouse lymphoma and human fibroblast cells were exposed to sodium fluoride (NaF) at final concentration ranging from 7 to 100 μg/mL for 3 h at 37μC. The results pointed out that NaF in all tested concentrations did not contribute to DNA damage as depicted by the mean tail moment and tail intensity for both cellular types assessed. These findings are clinically important because they represent a valuable contribution for evaluation of the potential health risk associated with exposure to agents usually used in dental practice.
Resumo:
Chloroform and eucalyptol are widely used in clinical dentistry as gutta-percha solvents. However, these compounds may represent a hazard to human health, especially by causing injury to genetic apparatus and/or inducing cellular death. In this study, the genotoxic and cytotoxic potentials associated with exposure to chloroform and eucalyptol were assessed on mouse lymphoma cells in vitro by the single cell gel (comet) assay and trypan blue exclusion test, respectively. Both gutta-percha solvents proved to be cytotoxic at the same levels in concentrations of 2.5, 5 and 10 μL/mL (p<0.05). On the other hand, neither of the solvents induced DNA breakage. Taken together, these results suggest that although both tested compounds (chloroform and eucalyptol) are strong cytotoxicants, it seems that they are not likely to increase the level of DNA damage on mammalian cells.
Resumo:
Paracoccidioidomycosis is a systemic fungal infection caused by Paracoccidioides brasiliensis. As infectious diseases can cause DNA damage, the authors aimed at analyzing DNA breakage in peripheral blood cells of patients with paracoccidioidomycosis by using the comet assay. The results suggested that paracoccidioidomycosis does not cause genotoxicity.
Resumo:
Part 1: The alkaline single-cell gel electrophoresis (comet) assay was used to analyse the integrity and DNA content of exfoliated cells extracted from bladder washing specimens from 9 transitional cell carcinoma patients and 15 control patients. DNA damage, as expressed by % tail DNA and tail moment values, was observed to occur in cells from both control and bladder cancer samples. The extent of the damage was, however, found to be significantly greater in the cancer group than in the control group. Comet optical density values were also recorded for each cell analysed in the comet assay and although differences observed between tumour grades were not found to be statistically significant, the mean comet optical density value was observed to be greater in the cancer group than in the control population studied, These preliminary results suggest that the comet assay may have potential as a diagnostic tool and as a prognostic indicator in transitional cell carcinoma, Part 2: Baseline DNA damage in sperm cells from 13 normozoospermic fertile males, 17 normozoospermic infertile males and 11 asthenozoospermic infertile males were compared using a modified alkaline comet assay technique. No significant difference in the level of baseline DNA damage was observed between the 3 categories of sperm studied; however the untreated sperm cells were observed to display approximately 20% tail DNA. This is notably higher than the background DNA damage observed in somatic cells where the % tail DNA is normally less than 5%. Sperm from the 3 groups of men studied were also compared for sensitivity to DNA breakage, using the modified alkaline comet assay, following X-ray irradiations (5, 10 and 30 Gy) and hydrogen peroxide treatments (40, 100 and 200 mu M). Significant levels of X-ray-induced damage were found relative to untreated control sperm in the two infertile groups following 30 Gy irradiation. Significant damage in hydrogen peroxide-treated sperm was observed in sperm from fertile samples, at 200 mu M and in infertile samples at 100- and 200-mu M doses relative to controls. These results therefore indicate that fertile sperm samples are more resistant to X-ray- and hydrogen peroxide-induced DNA breakage than infertile samples. Further studies involving greater numbers of individuals are currently in progress to confirm these findings.
Resumo:
Buccal mucosa (BM) cells have been used in human biomonitoring studies for detecting DNA adducts and chromosomal damage in an epithelial cell population. In the present study, we have investigated if human BM cells are suitable for use in the single-cell gel electrophoresis (SCGE)/Comet assay as an approach for estimating the exposure of epithelial cells to DNA-damaging agents. Our results indicate that only a few cells from BM cell samples yield comets that can be analyzed by current methods, and that the yield of cells with comets is independent of the percentage of viable BM cells in the sample. Data generated after enzymatic enrichment of viable cells and immunomagnetic separation of epithelial cells suggest that most of the BM cells that do form comets are probably leukocytes. Moreover, by reevaluating specific cells after running the Comet assay, we found that viable epithelial BM cells give rise to atypical comets that are not included in the analysis. Comparing DNA migration patterns between small groups of smokers and nonsmokers indicated that long-term smoking had no effect on the subpopulation of cells that yield typical comets. Our results indicate that the SCGE assay, as it is commonly performed, may not be useful for genotoxicity monitoring in human epithelial BM cells.
Resumo:
The single cell gel eletrophoresis or the comet assay was established in the freshwater snail Biomphalaria glabrata. For detecting DNA damage in circulating hemocytes, adult snails were irradiated with single doses of 2.5. 5, 10 and 20 Gy of Co-60 gamma radiation. Genotoxic effect of ionizing radiation was detected at all doses as a dose-related increase in DNA migration. Comet assay in B. glabrata demonstrated to be a simple, fast and reliable tool in the evaluation of genotoxic effects of environmental mutagens. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Los solventes orgánicos son sustancias químicas que por sus propiedades físico-químicas son fácilmente inhalados o absorbidos por la piel, pueden causar daños de diversa índole en la salud. En Colombia existen normas que contemplan las medidas de protección, sin embargo persiste la informalidad en el sector de pintores de autos, por lo cual los trabajadores expuestos, a largo plazo pueden ver afectada su salud. En este estudio se analizó la relación entre individuos expuestos laboralmente a los solventes orgánicos versus no expuestos con respecto a la longitud de sus telómeros y formación de fragilidades. Se emplearon muestras de sangre extraídas por venopunción, recolectada en dos tubos: uno con Heparina, destinado al cultivo de linfocitos, para obtener cromosomas metafásicos y evaluar en ellos la presencia de fragilidades; el otro tubo con EDTA, fue empleado para la extracción de ADN y se utilizó para obtener los valores de longitud telomérica mediante la técnica de PCR cuantitativa. Los análisis estadísticos se realizaron aplicando la prueba de rangos de Wilcoxon, en el caso de la presencia de fragilidades se analizó la razón No.Fragilidades/No.Metafases, aplicando el método de Wilcoxon se encontró que existe diferencia estadísticamente significativa entre expuestos y no expuestos (p = 0,036), en donde los expuestos presentan mayor frecuencia de fragilidades. Por otra parte el valor relativo de longitud telomérica del grupo de expuestos fue mayor que el observado en el grupo de no expuestos, esta diferencia fue estadísticamente significativa (Wilcoxon, p = 0.002).
Biocompatibility in vitro tests of mineral trioxide aggregate and regular and white Portland cements
Resumo:
Mineral trioxide aggregate (MTA) and Portland cement are being used in dentistry as root end-filling materials. However, biocompatibility data concerning genotoxicity and cytotoxicity are needed for complete risk assessment of these compounds. In the present study, genotoxic and cytotoxic effects of MTA and Portland cements were evaluated in vitro using the alkaline single cell gel (comet) assay and trypan blue exclusion test, respectively, on mouse lymphoma cells. The results demonstrated that the single cell gel (comet) assay failed to detect DNA damage after a treatment of cells by MTA and Portland cements for concentrations up to 1000 mu g/ml. Similarly, results showed that none of the compounds tested were cytotoxic. Taken together, these results seem to indicate that MTA and Portland cements are not genotoxins and do not induce cellular death.
Resumo:
Mineral trioxide aggregate (MTA) and Portland cement are being used in dentistry as root-end-filling material for periapical surgery and for the sealing of communications between the root canal system and the surrounding tissues. However, genotoxicity tests for complete risk assessment of these compounds have not been conducted up to now. In the present study, the genotoxic effects of MTA and Portland cements were evaluated in peripheral lymphocytes from 10 volunteers by the alkaline single cell gel (comet) assay. The results pointed out that the single cell gel (comet) assay failed to detect the presence of DNA damage after a treatment of peripheral lymphocytes by MTA and Portland cements for concentrations up to 1000 mu g mL(-1). In summary, our results indicate that exposure to MTA or Portland cements may not be a factor that increases the level of DNA lesions in human peripheral lymphocytes as detected by single cell gel (comet) assay.