999 resultados para semigroups of homeomorphisms
Resumo:
In this paper, we introduce the concept of dynamic Morse decomposition for an action of a semigroup of homeomorphisms. Conley has shown in [5, Sec. 7] that the concepts of Morse decomposition and dynamic Morse decompositions are equivalent for flows in metric spaces. Here, we show that a Morse decomposition for an action of a semigroup of homeomorphisms of a compact topological space is a dynamic Morse decomposition. We also define Morse decompositions and dynamic Morse decompositions for control systems on manifolds. Under certain condition, we show that the concept of dynamic Morse decomposition for control system is equivalent to the concept of Morse decomposition.
Resumo:
Let X be a finite or infinite chain and let be the monoid of all endomorphisms of X. In this paper, we describe the largest regular subsemigroup of and Green's relations on. In fact, more generally, if Y is a nonempty subset of X and is the subsemigroup of of all elements with range contained in Y, we characterize the largest regular subsemigroup of and Green's relations on. Moreover for finite chains, we determine when two semigroups of the type are isomorphic and calculate their ranks.
Resumo:
Let V be an infinite-dimensional vector space and for every infinite cardinal n such that n≤dimV, let AE(V,n) denote the semigroup of all linear transformations of V whose defect is less than n. In 2009, Mendes-Gonçalves and Sullivan studied the ideal structure of AE(V,n). Here, we consider a similarly-defined semigroup AE(X,q) of transformations defined on an infinite set X. Quite surprisingly, the results obtained for sets differ substantially from the results obtained in the linear setting.
Resumo:
Finitely generated linear semigroups over a field K that have intermediate growth are considered. New classes of such semigroups are found and a conjecture on the equivalence of the subexponential growth of a finitely generated linear semigroup S and the nonexistence of free noncommutative subsemigroups in S, or equivalently the existence of a nontrivial identity satisfied in S, is stated. This ‘growth alternative’ conjecture is proved for linear semigroups of degree 2, 3 or 4. Certain results supporting the general conjecture are obtained. As the main tool, a new combinatorial property of groups is introduced and studied.
Resumo:
In this thesis we investigate some problems in set theoretical topology related to the concepts of the group of homeomorphisms and order. Many problems considered are directly or indirectly related to the concept of the group of homeomorphisms of a topological space onto itself. Order theoretic methods are used extensively. Chapter-l deals with the group of homeomorphisms. This concept has been investigated by several authors for many years from different angles. It was observed that nonhomeomorphic topological spaces can have isomorphic groups of homeomorphisms. Many problems relating the topological properties of a space and the algebraic properties of its group of homeomorphisms were investigated. The group of isomorphisms of several algebraic, geometric, order theoretic and topological structures had also been investigated. A related concept of the semigroup of continuous functions of a topological space also received attention
Resumo:
We prove that given a compact n-dimensional connected Riemannian manifold X and a continuous function g : X -> R, there exists a dense subset of the space of homeomorphisms of X such that for all T in this subset, the integral integral(X) g d mu, considered as a function on the space of all T-invariant Borel probability measures mu, attains its maximum on a measure supported on a periodic orbit.
Resumo:
We prove that a semigroup generated by finitely many truncated convolution operators on $L_p[0, 1]$ with 1 ≤ p < ∞ is non-supercyclic. On the other hand, there is a truncated convolution operator, which possesses irregular vectors.
Resumo:
Algebra Colloquium, 15 (2008), p. 581–588
Resumo:
Publicationes Mathematicae Debrecen
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
By using the theory of semigroups of growth a, we discuss the existence of mild solutions for a class of abstract neutral functional differential equations. A concrete application to partial neutral functional differential equations is considered. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The rank of a semigroup, an important and relevant concept in Semigroup Theory, is the cardinality of a least-size generating set. Semigroups of transformations that preserve or reverse the order or the orientation as well as semigroups of transformations preserving an equivalence relation have been widely studied over the past decades by many authors. The purpose of this article is to compute the ranks of the monoid
Resumo:
Glasgow Mathematical Journal, nº 50 (2008), p. 325-333
Resumo:
Given a compact manifold X, a continuous function g : X -> IR, and a map T : X -> X, we study properties of the T-invariant Borel probability measures that maximize the integral of g. We show that if X is a n-dimensional connected Riemaniann manifold, with n >= 2, then the set of homeomorphisms for which there is a maximizing measure supported on a periodic orbit is meager. We also show that, if X is the circle, then the ""topological size"" of the set of endomorphisms for which there are g maximizing measures with support on a periodic orbit depends on properties of the function g. In particular, if g is C(1), it has interior points.