899 resultados para semiconductor optical amplifiers (SOAs)
Resumo:
The gain recoveries in quantum dot semiconductor optical amplifiers (QD SOAs) are numerically studied by rate equation simulation. Similar to the optical pump-probe experiment, the injection of double 150 fs optical pulses is used to simulate the gain recovery of a weak continuous signal under different injection levels, inhomogeneous broadenings, detuning wavelengths, and pulse signal energies for the QD SOAs. The obtained gain recoveries are then fitted by a response function with multiple exponential terms to determine the response times. The gain recovery can be described by three exponential terms with the time constants, which can be explained as carrier relaxation from the excited state to the ground state, carrier captured by the excited state from the wetting layer, and the supply of the wetting layer carriers. The fitted lifetimes decrease with the increase of the injection currents under gain unsaturation, slightly decrease with the decrease of inhomogeneous broadening of QDs, and increase with the increase of detuning wavelength between continuous signal and pulse signal and the increase of the pulse energy.
Resumo:
The gain saturation behaviors and noise figure are numerically analyzed for quantum-dot semiconductor optical amplifiers (QD-SOAs). The carrier and photon distributions in the longitudinal direction as well as the photon energy dependent facet reflectivity are accounted in the rate equations, which are solved with output amplified spontaneous emission spectrum as iterative variables. The longitudinal distributions of the occupation probabilities and spectral-hole burning are presented for electrons in the excited and ground states of quantum dots. The saturation output power 19.7 dBm and device gain 20.6 dB are obtained for a QD-SOA with the cavity length of 6 rum at the bias current of 500 mA. The influences of them electron intradot relaxation time and the QD capture time on the gain spectrum are simulated with the relaxation time of 1, 30, and 60 ps and capture time of 1, 5, and 10 ps. The noise figure as low as 3.5 dB is expected due to the strong polarization sensitive spontaneous emission. The characteristics of gain saturation and noise figure versus input signal power for QD-SOAs are similar to that of semiconductor. linear optical amplifiers with gain clamping by vertical laser fields.
Resumo:
The photon iterative numerical technique, which chooses the outputs of the amplified spontaneous emission spectrum and lasing mode as iteration variables to solve the rate equations, is proposed and applied to analyse the steady behaviour of conventional semiconductor optical amplifiers (SOAs) and gain-clamped semiconductor optical amplifiers (GCSOAs). Numerical results show that the photon iterative method is a much faster and more efficient algorithm than the conventional approach, which chooses the carrier density distribution of the SOAs as the iterative variable. It is also found that the photon iterative method has almost the same computing efficiency for conventional SOAs and GCSOAs.
Resumo:
Broad-band semiconductor optical amplifiers (SOAs) with different thicknesses and thin bulk tensile-strained active layers were fabricated and studied. Amplified spontaneous emission (ASE) spectra and gain spectra of SOAs were measured and analyzed at different CW biases. A maximal 3 dB ASE bandwidth of 136 nm ranging from 1480 to 1616 nm, and a 3 dB optical amplifier gain bandwidth of about 90 nm ranging from 1510 to 1600 nm, were obtained for the very thin bulk active SOA. Other SOAs characteristics such as saturation output power and polarization sensitivity were measured and compared. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The measurement and analysis of the microwave frequency response of semiconductor optical amplifiers (SOAs) are proposed in this paper. The response is measured using a vector network analyzer. Then with the direct-subtracting method, which is based on the definition of scattering parameters of optoelectronic devices, the responses of both the optical signal source and the photodetector are eliminated, and the response of only the SOA is extracted. Some characteristics of the responses can be observed: the responses are quasi-highpass; the gain increases with the bias current; and the response becomes more gradient while the bias current is increasing. The multisectional model of an SOA is then used to analyze the response theoretically. By deducing from the carrier rate equation of one section under the steady state and the small-signal state, the expression of the frequency response is obtained. Then by iterating the expression, the response of the whole SOA is simulated. The simulated results are in good agreement with the measured on the three main characteristics, which are also explained by the deduced results. This proves the validity of the theoretical analysis.
Resumo:
The design and fabrication of 1550 nm semiconductor optical amplifiers (SOAs) and the characteristics of the fabricated SOA are reported. A novel gain measurement technique based on the integrations of the product of emission spectrum and a phase function over one mode interval is proposed for Fabry-Perot semiconductor lasers.
Resumo:
We describe a 42.6 Gbit/s all-optical pattern recognition system which uses semiconductor optical amplifiers (SOAs). A circuit with three SOA-based logic gates is used to identify the presence of specific port numbers in an optical packet header.
Resumo:
Semiconductor Optical Amplifiers (SOAs) have mainly found application in optical telecommunication networks for optical signal regeneration, wavelength switching or wavelength conversion. The objective of this paper is to report the use of semiconductor optical amplifiers for optical sensing taking into account their optical bistable properties. As it was previously reported, some semiconductor optical amplifiers, including Fabry-Perot and Distributed-Feedback Semiconductor Optical Amplifiers (FPSOAs and DFBSOAs), may exhibit optical bistability. The characteristics of the attained optical bistability in this kind of devices are strongly dependent on different parameters including wavelength, temperature or applied bias current and small variations lead to a change on their bistable properties. As in previous analyses for Fabry-Perot and DFB SOAs, the variations of these parameters and their possible application for optical sensing are reported in this paper for the case of the Vertical-Cavity Semiconductor Optical Amplifier (VCSOA). When using a VCSOA, the input power needed for the appearance of optical bistability is one order of magnitude lower than that needed in edge-emitting devices. This feature, added to the low manufacturing costs of VCSOAs and the ease to integrate them in 2-D arrays, makes the VCSOA a very promising device for its potential use in optical sensing applications.
Resumo:
The cross-gain-saturation effect in SOAs, has been shown to enable robust high-speed wavelength conversion. Under strong electrical and optical pumping, conversion speeds in excess of 20 Gbit/s have been illustrated. However, the effect of chirp on transmission distance at such ultrahigh bit rates has not been studied theoretically in detail. This paper considers the chirp introduced on conversion, employing cross-gain saturation, and studies its dependence on amplifier drive current and signal power. It further shows how an increase in injected cw optical power can reduce chirp while improving conversion speed.
Resumo:
The chapter reviews properties and applications of linear semiconductor optical amplifiers (SOA). Section 12.1 covers SOA basics, including working principles, material systems, structures and their growth. Booster or inline amplifiers as well as low-noise preamplifiers are classified. Section 12.2 discusses the influence of parameters like gain, noise figure, gain saturation, gain and phase dynamics, and alpha-factor. In Sect. 12.3, the application of a linear SOA as a reach extender in future access networks is addressed. The input power dynamic range is introduced, and measurements for on-off keying and phase shift keying signals are shown. Section 12.4 presents the state of the art for commercially available SOA and includes a treatment of reflective SOAs (RSOA) as well. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
The gain recoveries in quantum dot semiconductor optical amplifiers are numerically studied by rate equation models. Similar to the optical pump-probe experiment, the injection of double optical pulses is used to simulate the gain recovery of a weak continuous signal for the QD SOAs. The gain recoveries are fitted by a response function with multiple exponential terms. For the pulses duration of 10 ps, the gain recovery can be described by three exponential terms with the time constants, and for the pulse with the width of 150 fs, the gain recovery can be described by two exponential terms, the reason is that the short pulse does not consume lot of carriers.