976 resultados para semiconducting gadolinium silicide
Resumo:
Semiconducting gadolinium silicide GdxSi samples were prepared by mass-analyzed low-energy dual ion beam epitaxy technique. Auger electron spectroscopy depth profiles indicate that the gadolinium ions are implanted into the single-crystal silicon substrate and formed 20 nm thick GdxSi film. X-ray double-crystal diffraction measurement shows that there is no new phase formed. The XPS spectra show that one type of silicon peaks whose binding energy is between that of silicide and silicon dioxide, and the gadolinium peak of binding energy is between that of metal Gd and Gd2O3. All of these results indicate that an amorphous semiconductor is formed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Semiconducting manganese silicide, Mn27Si47 and Mn15Si26, were obtained using mass-analyzed low energy dual ion beam epitaxy technique, Auger electron spectroscopy depth profiles showed that some of the Mn ions were deposited on single-crystal silicon substrate and formed a 37.5 nm thick Mn film, and the other Mn ions were successfully implanted into the Si substrate with the implantation depth of 618 nm. Some samples were annealed in the atmosphere of flowing N-2 at 840 degreesC. X-ray diffraction measurements showed that the annealing was beneficial to the formation of Mn27Si47 and Mn15Si26 (C) 2001 Published by Elsevier Science B.V.
Resumo:
The magnetic semiconductor GdxSi1-x was prepared by low-energy dual ion-beam epitaxy. GdxSi1-x shows excellent magnetic properties at room temperature. A high magnetic moment of 10 mu(B) per Gd atom is observed. The high atomic magnetic moment is interpreted as being a result of the RKKY mechanism. The indirect exchange interaction between ions is strong at large distances due to the low state density of the carriers in the magnetic semiconductor.
Resumo:
The spontaneous reaction between microrods of an organic semiconductor molecule, copper 7,7,8,8-tetracyanoquinodimethane (CuTCNQ) with [AuBr4]− ions in an aqueous environment is reported. The reaction is found to be redox in nature which proceeds via a complex galvanic replacement mechanism, wherein the surface of the CuTCNQ microrods is replaced with metallic gold nanoparticles. Unlike previous reactions reported in acetonitrile, the galvanic replacement reaction in aqueous solution proceeds via an entirely different reaction mechanism, wherein a cyclical reaction mechanism involving continuous regeneration of CuTCNQ consumed during the galvanic replacement reaction occurs in parallel with the galvanic replacement reaction. This results in the driving force of the galvanic replacement reaction in aqueous medium being largely dependent on the availability of [AuBr4]− ions during the reaction. Therefore, this study highlights the importance of the choice of an appropriate solvent during galvanic replacement reactions, which can significantly impact upon the reaction mechanism. The reaction progress with respect to different gold salt concentration was monitored using Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopy (XPS), as well as XRD and EDX analysis, and SEM imaging. The CuTCNQ/Au nanocomposites were also investigated for their potential photocatalytic properties, wherein the destruction of the organic dye, Congo red, in a simulated solar light environment was found to be largely dependent on the degree of gold nanoparticle surface coverage. The approach reported here opens up new possibilities of decorating metal–organic charge transfer complexes with a host of metals, leading to potentially novel applications in catalysis and sensing.
Resumo:
The formation of readily recoverable and reusable organic semiconducting Cu- and AgTCNQ (TCNQ=7,7,8,8-tetracyanoquinodimethane) microstructures decorated with Pt and Pd metallic nanoparticles is described for the effective reduction of CrVI ions in aqueous solution at room temperature using both formic acid and an environmentally friendly thiosulfate reductant. The M-TCNQ (M=metal) materials were formed by electrocrystallisation onto a glassy carbon surface followed by galvanic replacement in the presence of H2PtCl6 or PdCl2 to form the composite material. It was found that loading of the surface with nanoparticles could easily be controlled by changing the metal salt concentration. Significantly, the M-TCNQ substrates facilitated the formation of well-isolated metal nanoparticles on their surfaces under appropriate galvanic replacement conditions. The semiconductor–metal nanoparticle combination was also found to be critical to the catalyst performance, wherein the best-performing material was CuTCNQ modified by well-isolated Pt nanoparticles with both formic acid and thiosulfate ions as the reductant.
Resumo:
TCNQ·− radical anions (TCNQ = 7,7,8,8,-tetracyanoquinodimethane) form a wide range of semiconducting coordination polymers when coordinated to transition metals. Some such as CuTCNQ and AgTCNQ exhibit molecular switching and memory storage properties; others have intriguing magnetic properties and for example may behave as molecular magnets at low temperature. In this review, the electro- and photo-chemical synthesis and characterization of this important class of material is reviewed. In particular, the electrochemistry and the redox properties of TCNQ derivatives of coordination polymers based on Cu, Ag, Mn, Fe, Co, Ni, Zn and Cd transition metals are surveyed, with an emphasis on the mechanistic aspects of their electrochemical formation via nucleation–growth processes. Given that TCNQ is an extremely good electron acceptor, readily forming TCNQ•− and TCNQ2-, electrochemical reduction of TCNQ in the presence of a transition metal ion provides an ideal method for synthesis of metal-TCNQ materials by electrocrystallization from organic solvents and ionic liquids or solid-solid transformation using TCNQ modified electrodes from aqueous media containing transition metal electrolytes. The significance of the reversible formal potential (E0f) in these studies is discussed. The coupling of electrocrystallisation on electrode surfaces and microscopic characterization of the electrodeposited materials reveals a wide range of morphologies and phases which strongly influence their properties and applications. Since TCNQ also can be photo-reduced in the presence of suitable electron donors, analogous photochemical approaches to the synthesis of TCNQ-transition metal derivatives are available. The advantages of electrochemical and photochemical methods of synthesis relative to chemical synthesis are outlined.
Resumo:
Chemically synthesized AgTCNQ exists in two forms that differ in their morphologies (needles and microcrystals) and colors (red and blue). It is now shown that both forms exhibit essentially indistinguishable X-ray diffraction, spectroscopic, and thermochemical data, implying that they are not separate phases, as implied in some literature. Electrochemical reduction of TCNQ((MeCN)) in the presence of Ag+((MeCN)) generates both red and blue AgTCNQ. On glassy carbon, platinum, or indium tin oxide electrodes and at relatively positive deposition potentials, slow growth of high aspect ratio, red needle AgTCNQ crystals occurs. After longer times and at more negative deposition potentials, blue microcrystalline AgTCNQ thin films are favored. Blue AgTCNQ is postulated to be generated via reduction of a Ag+\[(TCNQ(center dot-))(TCNQ)]((MeCN)) intermediate. At even more negative potentials, Ag-(metal) formation inhibits further growth of AgTCNQ. On a gold electrode, Ag-(metal)) deposition occurs at more positive potentials than on the other electrode materials examined. However, surface plasmon resonance data indicate (hat a small potential region is available between the stripping of Ag-(metal)) and the oxidation of TCNQ(center dot-)(MeCN) back to TCNQ(MeCN) where AgTCNQ may form. AgTCNQ in both the red and blue forms also can be prepared electrochemically on a TCNQ((s)) modified electrode in -0.1 M AgNO3(aq) where deposition of Ag(m,,,I) onto the TCNQ((s)) crystals allows a charge transfer process to occur. However, the morphology formed in this solid-solid phase transformation is more difficult to control.
Resumo:
Three case studies are presented to show low-temperature plasma-specific effects in the solution of (i) effective control of nucleation and growth; (ii) environmental friendliness; and (iii) energy efficiency critical issues in semiconducting nanowire growth. The first case (related to (i) and (iii)) shows that in catalytic growth of Si nanowires, plasma-specific effects lead to a substantial increase in growth rates, decrease of the minimum nanowire thickness, and much faster nanowire nucleation at the same growth temperatures. For nucleation and growth of nanowires of the same thickness, much lower temperatures are required. In the second example (related to (ii)), we produce Si nanowire networks with controllable nanowire thickness, length, and area density without any catalyst or external supply of Si building material. This case is an environmentally-friendly alternative to the commonly used Si microfabrication based on a highly-toxic silane precursor gas. The third example is related to (iii) and demonstrates that ZnO nanowires can be synthesized in plasma-enhanced CVD at significantly lower process temperatures than in similar neutral gas-based processes and without compromising structural quality and performance of the nanowires. Our results are relevant to the development of next-generation nanoelectronic, optoelectronic, energy conversion and sensing devices based on semiconducting nanowires.
Resumo:
A simple, uniquely plasma-enabled and environment-friendly process to reduce the thickness of vertically standing graphenes to only 4–5 graphene layers and arranging them in dense, ultra-large surface area, ultra-open-edge-length, self-organized and interconnected networks is demonstrated. The approach for the ultimate thickness reduction to 1–2 graphene layers is also proposed. The vertical graphene networks are optically transparent and show tunable electric properties from semiconducting to semi-metallic and metallic at room and near-room temperature, thus recovering semi-metallic properties of a single-layer graphene.
Resumo:
Controlled synthesis of both single-walled carbon nanotube and carbon nanowire networks using the same CVD reactor and Fe/Al2O3 catalyst by slightly altering the hydrogenation and temperature conditions is demonstrated. Structural, bonding and electrical characterization using SEM, TEM, Raman spectroscopy, and temperature-dependent resistivity measurements suggest that the nanotubes are of a high quality and a large fraction (well above the common 33% and possibly up to 75%) of them are metallic. On the other hand, the carbon nanowires are amorphous and semiconducting and feature a controlled sp2/sp3 ratio. The growth mechanism which is based on the catalyst nanoisland analysis by AFM and takes into account the hydrogenation and temperature control effects explains the observed switch-over of the nanostructure growth modes. These results are important to achieve the ultimate control of chirality, structure, and conductivity of one-dimensional all-carbon networks.
Resumo:
The applications of organic semiconductors in complex circuitry such as printed CMOS-like logic circuits demand miniaturization of the active structures to the submicrometric and nanoscale level while enhancing or at least preserving the charge transport properties upon processing. Here, we addressed this issue by using a wet lithographic technique, which exploits and enhances the molecular order in polymers by spatial confinement, to fabricate ambipolar organic field effect transistors and inverter circuits based on nanostructured single component ambipolar polymeric semiconductor. In our devices, the current flows through a precisely defined array of nanostripes made of a highly ordered diketopyrrolopyrrole-benzothiadiazole copolymer with high charge carrier mobility (1.45 cm2 V-1 s-1 for electrons and 0.70 cm2 V-1 s-1 for holes). Finally, we demonstrated the functionality of the ambipolar nanostripe transistors by assembling them into an inverter circuit that exhibits a gain (105) comparable to inverters based on single crystal semiconductors.
Resumo:
Semiconducting properties of nanoparticle coating on liquid metal marbles can present opportunities for an additional dimension of control on these soft objects with functional surfaces in aqueous environments. We show the unique differences in the electrochemical actuation mechanisms of liquid metal marbles with n- and p-type semiconducting nanomaterial coating. A systematic study on such liquid metal marbles shows voltage dependent nanoparticle cluster formation and morphological changes of the liquid metal core during electrochemical actuations and these observations are unique to p-type nanomaterial coated liquid metal marbles.