927 resultados para seed retention time
Resumo:
Long-distance dispersal (LDD) events, although rare for most plant species, can strongly influence population and community dynamics. Animals function as a key biotic vector of seeds and thus, a mechanistic and quantitative understanding of how individual animal behaviors scale to dispersal patterns at different spatial scales is a question of critical importance from both basic and applied perspectives. Using a diffusion-theory based analytical approach for a wide range of animal movement and seed transportation patterns, we show that the scale (a measure of local dispersal) of the seed dispersal kernel increases with the organisms' rate of movement and mean seed retention time. We reveal that variations in seed retention time is a key determinant of various measures of LDD such as kurtosis (or shape) of the kernel, thinkness of tails and the absolute number of seeds falling beyond a threshold distance. Using empirical data sets of frugivores, we illustrate the importance of variability in retention times for predicting the key disperser species that influence LDD. Our study makes testable predictions linking animal movement behaviors and gut retention times to dispersal patterns and, more generally, highlights the potential importance of animal behavioral variability for the LDD of seeds.
Resumo:
Cattle consuming pastures low in protein have low liveweight gain due to low rumen degradable protein (RDP) supply and thus low microbial crude protein (MCP) production and efficiency of MCP production [EMCP, g MCP/kg digestible organic matter (DOM)]. Nitrogen supplements can increase MCP production and EMCP of cattle grazing low protein pastures. The objective of this study was to compare the effects of supplementation with a non-protein-N source (NPN), in this case urea and ammonium sulfate (US), with a single-cell algal protein source (Spirulina platensis), on intake, microbial protein supply and digestibility in cattle. Nine cannulated Bos indicus steers [initial liveweight 250.1 ± 10.86 (s.d.) kg] were fed Mitchell grass hay (Astrebla spp; 6.1 g N, 746 g NDF/kg DM) ad libitum and were supplied with increasing amounts of US (0, 6, 13, 19 and 33 g US DM/kg hay DM) or Spirulina 0, 0.5, 1.4, 2.5 and 6.1 g Spirulina DM/kg W.day in an incomplete Latin square design. The response of MCP production and EMCP to increasing amounts of the two supplements was different, with a greater response to Spirulina evident. The MCP production was predicted to peak at 140 and 568 g MCP/day (0.64 and 2.02 g MCP/kg W.day) for the US and Spirulina supplements, respectively. The highest measured EMCP were 92 and 166 g MCP/kg DOM for the US and Spirulina treatments at 170 and 290 g RDP/kg DOM, respectively, or a Spirulina intake of 5.7 g DM/kg W.day. Increasing RDP intake from US and Spirulina resulted in an increase in Mitchell grass hay intake and rumen NH3-N concentration and reduced the retention time of liquid and particulate markers and digesta DM, NDF and lignin in the rumen with greater changes due to Spirulina. Total DM intake peaked at a Spirulina supplement level of 4.6 g Spirulina DM/kg W.day with a 2.3-fold higher DOM intake than Control steers. Rumen NH3-N concentrations reached 128 and 264 mg NH3-N/L for the US and Spirulina treatments with a significant increase in the concentration of branched-chain fatty acids for the Spirulina treatment. The minimum retention time of liquid (Cr-EDTA; 23 and 13 h) and particulate (Yb; 34 and 22 h) markers in the rumen were significantly lower for Spirulina compared with US and lower than unsupplemented animals at 24 and 34 h for Cr-EDTA and Yb, respectively. Spirulina could be provided safely at much higher N intakes than NPN supplements. The results suggest that, at an equivalent RDP supply, Spirulina provided greater increases than US in MCP production, EMCP and feed intake of Bos indicus cattle consuming low protein forage and could also be fed safely at higher levels of N intake.
Resumo:
An empirical equation is proposed to accurately correlate isothermal data over a wide range of temperature With the equation ln k = A* + B*/T-lambda the retention times of different solutes tested on OV-101, SE-54 and PEG 20M capillary columns have been achieved even when lambda is assigned a constant value of 1.7 Comparison with ln k = A + B/T and in k = c + d/T+ h/T-2, shows that the proposed equation is of higher accuracy and is applicable to extrapolation calculation, especially from data at high temperature to those at low temperature. Parameters A* and B* as well as A and B are also discussed. The linear correlation of A* and B* is weaker than that of A and B.
Resumo:
Proteins are commonly identified through enzymatic digestion and generation of short sequence tags or fingerprints of peptide masses by mass spectrometry. Separation methods, such as liquid chromatography and electrophoresis, are often used to fractionate complex protein or peptide mixtures and these separations also provide information on the different species, such as molecular weight and isoelectric point from electrophoresis and hydrophobicity in reversed-phase chromatography. These are also properties that can be predicted from amino acid sequences derived from genomic sequences and used in protein identification. This chapter reviews recently introduced methods based on retention time prediction to extract information from chromatographic separations and the applications to protein identification in organisms with small and large genomes. Novel data on retention time prediction of posttranslationally modified peptides is also presented.
Resumo:
One-transistor floating-body random access memory retention time distribution is investigated on silicon-on-insulator UTBOX devices. It is shown that the average retention time can be improved by two to three orders of magnitude by reducing the body-junction electric field. However, the retention time distribution, which is mainly caused by the generation-recombination center density variation, remains similar.
Resumo:
The floating-body-RAM sense margin and retention-time dependence on the gate length is investigated in UTBOX devices using BJT programming combined with a positive back bias (so-called V th feedback). It is shown that the sense margin and the retention time can be kept constant versus the gate length by using a positive back bias. Nevertheless, below a critical L, there is no room for optimization, and the memory performances suddenly drop. The mechanism behind this degradation is attributed to GIDL current amplification by the lateral bipolar transistor with a narrow base. The gate length can be further scaled using underlap junctions.
Resumo:
Contaminant metals bound to sediments are subject to considerable solubilization during passage of the sediments through the digestive systems of deposit feeders. We examined the kinetics of this process, using digestive fluids extracted from deposit feeders Arenicola marina and Parastichopus californicus and then incubated with contaminated sediments. Kinetics are complex, with solubilization followed occasionally by readsorption onto the sediment. In general, solubilization kinetics are biphasic, with an initial rapid step followed by a slower reaction. For many sediment-organism combinations, the reaction will not reach a steady state or equilibrium within the gut retention time (GRT) of the organisms, suggesting that metal bioavailability in sediments is a time-dependent parameter. Experiments with commercial protein solutions mimic the kinetic patterns observed with digestive fluids, which corroborates our previous study that complexation by dissolved amino acids (AA) in digestive fluids leads to metal solubilization (Chen & Mayer 1998b; Environ Sci Technol 32:770-778). The relative importance of the fast and slow reactions appears to depend on the ratio of ligands in gut fluids to the amount of bound metal in sediments. High ligand to solid metal ratios result in more metals released in fast reactions and thus higher lability of sedimentary metals. Multiple extractions of a sediment with digestive fluid of A. marina confirm the potential importance of incomplete reactions within a single deposit-feeding event, and make clear that bioavailability to a single animal is Likely different from that to a community of organisms. The complex kinetic patterns lead to the counterintuitive prediction that toxification of digestive enzymes by solubilized metals will occur more readily in species that dissolve less metals.
Resumo:
In this study, the filtration process and the biomass characteristics in a laboratory-scale submerged membrane bioreactor (MBR) equipped with a hollow fiber (HF) microfiltration membrane were studied at different solid retention times (SRT). The MBR was fed by synthetic wastewater and the organic loading rate (OLR) was 0.5, 0.2, 0.1, and 0.08 kg COD kg VSS−1 d−1 for 10, 30, 60, and 90 days of SRT, respectively. The hydraulic retention time was 8.4 h and the permeate flux was 6 L m−2 h−1(LMH). Data analysis confirmed that at all the studied SRTs, the HF-MBR operated very good obtaining of high quality permeates. Chemical Oxygen Demand (COD) removal efficiencies were higher than 95%. The best filtration performance was reached at SRT of 30 d. On the other hand, the respirometric analysis showed that biomass was more active and there was more biomass production at low SRTs. The concentration of soluble extracellular polymeric substances (EPS) decreased with increasing SRT. A decrease of soluble EPS caused a decrease of membrane fouling rate, decreasing the frequency of chemical cleanings. The floc size decreased with SRT increasing. At high SRTs, there was more friction among particles due to the increase of the cellular density and the flocs broke decreasing their size.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Quantificar a sombra de sementes gerada por um dispersor, ou seja, a maneira como as sementes são distribuídas em função do tempo que o dispersor as retém e de como este se desloca pelo habitat, é etapa essencial para avaliar os impactos do dispersor na estruturação e funcionamento de populações e comunidades vegetais. Este é o primeiro estudo com o primata S. bicolor como dispersor de sementes e teve como objetivo investigar o padrão de formação de sombra de sementes e sua relação com o padrão de deslocamento da espécie. O deslocamento de quatro grupos de S. bicolor foi monitorado em três fragmentos florestais em Manaus, Amazonia Central. O posicionamento dos animais em um sistema de trilhas foi registrado em intervalos de cinco minutos, ao longo de todo período de atividade, cinco dias ao mês durante o mínimo de 15 meses cada grupo. O tempo de retenção de sementes foi estimado registrando-se o tempo de ingestão, de defecação e o número de sementes de cinco espécies de frutos cultivados ofertados a quatro indivíduos criados em cativeiro. Sombras de sementes foram estimadas através da combinação de dados do padrão de deslocamento com dados do tempo de retenção de sementes. Para cada grupo, foram obtidas a distância média de dispersão e a proporção da área de uso ocupada em uma base mensal, e a relação destas duas variáveis foi verificada através de uma regressão linear simples. O tempo de retenção de sementes variou de 27 a 295 minutos (N = 394), sendo que mais da metade das sementes ficam retidas em até duas horas no trato digestivo, e o número médio de sementes por defecação foi de 3,5 (± 3,7; N = 111). Probabilidades de dispersão de sementes para fora das imediações da planta-matriz ultrapassam 80%, além de incluírem distâncias maiores do que 1 km. Apenas para dois grupos foi verificado que há relação entre a proporção da área de uso e as distâncias de dispersão sendo que para um destes o poder explanatório do modelo foi menor do que 20%. Os resultados indicam que S. bicolor dispersa sementes de forma efetiva e, assim como outros calitriquíneos, pode contribuir para a estruturação e regeneração de ecossistemas florestais.
Resumo:
Seed dispersal is a key process in the life cycle of plant species and may determine the dynamics of their populations. The passage of the fruit from the gastrointestinal tract brings effects on energy and nutritional rewards for the bird. The retention time of the seeds is an essential factor for the dispersion, affecting the dispersal distance. Some factors determine it, as the size of the bird, degree of frugivory, chemical composition of the fruit, the number and size of seeds. The study sought to characterize the Morus nigra seed retention time in three species of thrushes and compare them with other species of birds and plants. The blackberry, exotic species with socio-economic importance in Brazil, produces aggregate fruit having up to 60 seeds. Have been kept in captivity individuals leucomelas Turdus rufiventris thrush, thrush and amaurochalinus, native and omnivorous species, important dispersers in degraded areas, inhabiting the urban and the natural environment. In 274 samples of feces was recorded about 500 mulberry seeds. The first record of seeds was in 15 minutes (n = 2) and the last to 115 minutes (n = 4) after eating the fruit. The average time of gastrointestinal transit of seed for the three species was 52 minutes and 80% were defecated to 65 minutes post ingestion. Taking into consideration the type of fruit and the species of bird, there is great variation in the retention time when compared to other species of birds, being in general slower. That way, can be increase the degree of dispersion of the seed to more distant areas of the mother plant, increasing the chances of survival of seedlings, according to the hypothesis Janzen and Connell. The Turdus It showed efficient dispersers Morus nigra seeds, and inhabits natural and urbanized environment, the possibility of exchange of these seeds between environments by the action of thrushes
Resumo:
Harvest weed seed control (HWSC) is a new approach which targets weed seed removal and/or destruction during the crop harvest operation. The success of HWSC is dependant upon weed seed retention at harvest. To identify and define the potential value of HWSC in northern farming systems, we conducted a field survey. In total 1400 transects across 70 paddocks assessed weed distribution, density and seed production at harvest time in wheat, chickpea and sorghum crops. Seventy weed species were identified, of which many had large seed numbers retained at crop harvest. The most prevalent included common sowthistle, flaxleaf fleabane, awnless barnyard grass, wild oat, and African turnip weed. Our field survey has shown there is a role for HWSC in the northern farming system. Therefore the efficacy of specific HWSC systems on problematic weeds should be evaluated in the northern region.