997 resultados para sedative effect
Resumo:
Amitraz, an acaricide used to control ectoparasites in animals has a complex pharmacological activity, including α2-adrenergic agonist action. The purpose of this research was to investigate the possible antinociceptive and/or sedative effect of amitraz in horses. The sedative effect of the intravenous (i.v.) injection of dimethylformamide (DMF, 5 mL, control) or amitraz (0.05, 0.10, 0.15 mg/kg), was investigated on the head ptosis test. The participation of α2-adrenergic receptors in the sedative effect provoked by amitraz was studied by dosing yohimbine (0.12 mg/kg, i.v.). To measure the antinociception, xylazine hydrochloride (1 mg/kg, i.v., positive control) and the same doses of amitraz and DMF were used. A focused radiant light/heat directed onto the fetlock and withers of a horse were used as a noxious stimulus to measure the hoof withdrawal reflex latency (HWRL) and the skin twitch reflex latency (STRL). The three doses of amitraz used (0.05, 0.10 and 0.15 mg/kg) provoked a dose-dependent relaxation of the cervical muscles. The experiments with amitraz and xylazine on the HWRL showed that after i.v. administration of all doses of amitraz there was a significant increase of HWRL up to 150 min after the injections. Additionally, there was a significant difference between control (DMF) and positive control (xylazine) values up to 30 min after drug injection. On the other hand, the experiments on the STRL show that after administration of amitraz at the dose of 0.15 mg/kg, a significant increase in STRL was observed when compared with the control group. This effect lasted up to 120 min after injection. However, no significant antinociceptive effect was observed with the 0.05 and 0.10 mg/kg doses of amitraz or at the 1.0 mg/kg dose of xylazine.
Anticonvulsant and sedative effect of Fufang Changniu pills and probable mechanism of action in mice
Resumo:
Purpose: To investigate the anticonvulsant and sedative effects of Fufang Changniu Pills (FCP) and its probable mechanism of action in mice. Methods: The water decoction of FCP was prepared and the main constituents were determined by high performance liquid chromatography (HPLC). The anticonvulsant activities of FCP were evaluated by maximal electroshock (MES) and pentylenetetrazole (PTZ)-induced seizures in mice. Pentobarbital sodium-induced sleeping time and locomotor activity measurements were performed to evaluate the sedative effects of FCP in mice. Finally, PTZ-induced chronic seizures were established, and expressions of gamma-aminobutyric acid A receptor (GABA-A) and glutamic acid decarboxylase 65 (GAD65) in the brains of the mice were assayed by western blot in order to explore the probable mechanisms of action of the drug. Results: Gallic acid, liquiritin, cinnamyl alcohol, cinnamic acid and glycyrrhizic acid were detected in FCP decoction. FCP (50, 100 and 200 mg/kg) showed significant anticonvulsant and sedative effects on epileptic mice induced by MES (p < 0.05) and PTZ (p < 0.05). Moreover, pentobarbital sodium-induced sleeping time and locomotor activity tests showed that FCP possesses sedative effect (p < 0.05). Western blot data indicate that FCP significantly up-regulated GABA-A and GAD 65 in the brains of chronic epileptic rats (p < 0.05). Conclusion: FCP has significant anticonvulsant and sedative effects, and the mechanism of its action may be related to the up-regulation of GABA-A and GAD 65 in mice brain.
Resumo:
Os efeitos sedativos e antinociceptivos da levomepromazina, azaperone e midazolam foram avaliados utilizando-se três testes de comportamento em ratos e camundongos. No teste da atividade locomotora espontânea em campo aberto observou-se que tanto o comportamento exploratório como a atividade locomotora espontânea foram significativamente diminuídos quando se utilizou levomepromazina e azaperone. O efeito causado pelo azaperone foi menos prolongado quando comparado ao da levomepromazina. O midazolam causou diminuição do comportamento exploratório sem alterar a atividade locomotora espontânea. Quando se avaliou o efeito antinociceptivo por meio da latência para o reflexo da retirada da cauda em ratos após estímulo doloroso, as drogas não apresentaram nenhum efeito antinociceptivo observável. No teste das contorções em camundongos, os fármacos foram capazes de abolir as contorções quando comparados ao efeito do grupo-controle. Levomepromazina, azaperone e midazolam nas doses utilizadas foram capazes de inibir o comportamento exploratório de ratos, comprovando seus efeitos sedativos. Com relação aos efeitos antinociceptivos para dor visceral, eles foram capazes de inibir as contorções.
Resumo:
Compararam-se os efeitos sedativos e antinociceptivos da romifidina (0,1mg/kg) e da xilazina (1,0mg/kg) em éguas da raça Puro Sangue Inglês. A sedação foi quantificada por meio da atividade locomotora espontânea (ALE) e altura da cabeça (AC) em baias individuais automatizadas para o estudo do comportamento. A antinocicepção foi avaliada utilizando uma lâmpada de irradiação de calor registrando-se a latência para o reflexo de retirada do membro (LRRM) e a latência para o reflexo do frêmito cutâneo (LRFC), em delineamento experimental em blocos ao acaso com 10 repetições. O efeito sedativo sobre a ALE foi de aparecimento mais rápido no grupo exposto à xilazina, ao passo que a ptose da cabeça foi mais prolongada no grupo que recebeu romifidina. A romifidina promoveu aumento da LRRM e LRFC e a xilazina não causou efeito antinociceptivo medido pela LRFC. O efeito antinociceptivo da romifidina foi mais pronunciado que o da xilazina.
Resumo:
PURPOSE: To investigate the sedative and clinical effects of the pharmacopuncture with xylazine, compared to the conventional dose of a intramuscular injection in dogs.METHODS: Twelve dogs were randomly distributed in two groups of six animals and treated as follows: control group (X-IM): 1mg kg(-1) of xylazine given intramuscularly (IM); pharmacopuncture group (X-Yintang): 0.1mg kg(-1) of xylazine diluted to 0.5 mL of saline injected into the Yin Tang acupoint. Heart rate, cardiac rhythm (ECG), systolic arterial blood pressure (SABP), respiratory rate (RR), rectal temperature (RT), blood glucose concentration, degree of sedation and adverse effects were evaluated.RESULTS: Sedative effect was observed in both groups. The degree of sedation was greater in X-IM only at 15 min when compared with X-Yintang group. Cardiovascular established was observed in X-Yintang group, while marked reduction in the HR and increased incidence of ECG abnormalities were detected in X-IM. In both treatment groups, minimal changes were observed in relation to SABP, RR, RT and blood glucose. High incidence (66%) of vomiting was observed in X-IM, while this adverse effect was absent in X-Yintang.CONCLUSION: Pharmacopuncture with xylazine induced clinically relevant sedative effects in dogs, with the advantage of reduction of undesirable side effects associated with alpha(2)-agonists, including bradycardia, cardiac arrhythmias, and emesis.
Resumo:
The physiologist H. Selye defined stress as the nonspecific response of the body to any factors that endanger homeostasis (balance of internal environment) of the individual. These factors, agents stressors, are able to activate the Hypothalamic-Pituitary-Adrenal (HPA) axis, thus resulting in the physiological responses to stress by the release of glucocorticoids that leads to psychophysiological changes, including effects on cognitive functions such as learning and memory. When this axis is acutely stimulated occurs a repertoire of behavioral and physiological changes can be adaptive to the individual. Notwithstanding, when the HPA axis is chronically stimulated, changes may favor the development of, such as anxiety disorders. Some drugs used in the clinic for the treatment of anxiety disorders these can exert effects on cognitive function, on the HPA axis and on the anxiety. In this context, the aim of our study was to investigate the effects of administration i.p. acute of diazepam (DZP, 2 mg/kg), buspirone (BUS, 3 mg/kg), mirtazapine (MIR, 10 mg/kg) and fluoxetine (FLU, 10 mg/kg) in male mice submitted to acute restraint stress, and evaluated using plus-maze discriminative avoidance task (PMDAT), which simultaneously evaluates parameters such as learning, memory and anxiety. Our results demonstrated that (1) the administration of DZP and BUS, but not FLU, promoted anxiolytic effects in animals; (2) administration mirtazapine caused sedative effect to animals; (3) in the training session, the animals treated with BUS, MIR and FLU learned the task, on the other hand DZP group showed impairment in learning; (4) in the test session, animals treated with DZP, BUS, and MIR showed deficits in relation to discrimination between the enclosed arms, aversive versus non-aversive arm, demonstrating an impairment in memory, however, animals treated with FLU showed no interference in the retrieval of this memory; (5) acute stress did not interfere in locomotor activity, anxiety, or learning on the learning task, but induced impairment in retrieval memory, and the group treated with FLU did not demonstrated this deficit of memory . These results suggest that acute administration of drugs with anxiolytic and antidepressant activity does not interfere with the learning process this aversive task, but impair its retrieval, as well as the acute restraint stress. However, the antidepressant fluoxetine was able to reverse memory deficits promoted by acute stress, which may suggest that modulation, even acutely serotonergic neurotransmission, by selectively inhibiting the reuptake of this neurotransmitter, interferes on the process of retrieval of an aversive memory
Resumo:
Objective To evaluate the effects of methadone, administered alone or in combination with acepromazine or xylazine, on sedation and on physiologic values in dogs.Study design Randomized cross-over design.Animals Six adult healthy mixed-breed dogs weighing 13.5 +/- 4.9 kg.Methods Dogs were injected intramuscularly with physiologic saline (Control), or methadone (0.5mg kg(-1)) or acepromazine (0.1 mg kg(-1)) or xylazine (1.0 mg kg(-1)), or acepromazine (0.05 mg kg(-1)) plus methadone (0.5 mg kg(-1)) or xylazine (0.5 mg kg(-1)) plus methadone (0.5 mg kg(-1)) in a randomized cross-over design, with at least 1-week intervals. Sedation, pulse rate, indirect systolic arterial pressure, respiratory rate (RR), body temperature and pedal withdrawal reflex were evaluated before and at 15-minute intervals for 90 minutes after treatment.Results Sedation was greater in dogs receiving xylazine alone, xylazine plus methadone and acepromazine plus methadone. Peak sedative effect occurred within 30 minutes of treatment administration. Pulse rate was lower in dogs that received xylazine either alone or with methadone during most of the study. Systolic arterial pressure decreased only in dogs receiving acepromazine alone. When methadone was administered alone, RR was higher than in other treatments during most of the study and a high prevalence of panting was observed. In all treatments body temperature decreased, this effect being more pronounced in dogs receiving methadone alone or in combination with acepromazine. Pedal withdrawal reflex was absent in four dogs receiving methadone plus xylazine but not in any dog in the remaining treatments.Conclusions Methadone alone produces mild sedation and a high prevalence of panting. Greater sedation was achieved when methadone was used in combination with acepromazine or xylazine. The combination xylazine-methadone appears to result in better analgesia than xylazine administered alone. Both combinations of methadone/sedative were considered effective for premedication in dogs.
Resumo:
We evaluated the possible antiedematogenic, antinociceptive and/or sedative effects of four different extracts obtained from the bark of Quassia amara namely, 70% ethanol (70EtOH), 100% ethanol (100EtOH), dichloromethane (DCM) and hexane extracts (HEX). The oral administration (100, 250 and 500 mg/kg) of these extracts did not show significant effects in any experiment. However, when administered intraperitoneally, the HEX extract decreased the paw edema induced by carrageenan, showed antinociceptive effects on the hot-plate test and on acetic acid-induced writhing, and showed sedative effects on pentobarbital-induced sleep. Naloxone did not reverse the antinociceptive effect of this extract. In conclusion, although the mechanisms are uncertain, the results demonstrated that these effects are apparently related to sedative and muscle relaxant or psychomimetic activities of the HEX extract of the plant. (C) 2002 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
This report describes the development of a behaviour chamber and the validation of the chamber to measure locomotor activity of a horse, Locomotor activity was detected by four Mini-beam sensors and recorded on a data logger every 5 min for 22 h. Horses were more active during daytime than in the evening, which was at least partially related to human activity in their surroundings. To validate the ability of the chambers to detect changes in activity, fentanyl citrate and xylazine HCl, agents well-characterized as a stimulant and a depressant, respectively, were administered to five horses. Fentanyl citrate (0.016 mg/kg) significantly increased locomotor activity which persisted for 30 min, Xylazine HCl (1 mg/kg) significantly reduced locomotor activity for 90 min. Amitraz produced a dose-dependent decrease in locomotor activity, lasting 75 min for the 0.05 mg/kg dose, 120 min for the 0.10 mg/kg dose, and 180 min for the 0.15 mg/kg dose, In a separate experiment, yohimbine administration immediately reversed the sedative effect of amitraz, This suggests there is a similarity in the mode of action of amitraz, xylazine and detomidine, as yohimbine acts primarily by blocking central alpha 2-adrenoceptors that are stimulated by agents like xylazine, There was also a significant decrease in locomotor activity following injection of detomidine (0.02, 0.04 and 0.08 mg/kg) for 1.5, 3.5 and 5.0 h, respectively, the locomotor chamber is a useful, sensitive and highly reproducible tool for measuring spontaneous locomotor activity in the horse, which allows investigators to determine an agent's average time of onset, duration and intensity of effect on movement.
Resumo:
Amitraz (AM) and romifidine (RMF), two alpha-2 adrenoceptor agonists, produce sedative effect and decrease spontaneous locomotor activity (SLA) of horses. The behavioral effects and sedation after intravenous injection of RMF (0.06mg/kg) or AM 0.1mg/kg (AM 0.1) or AM 0.4mg/kg (AM 0.4) were compared in horses. RMF caused head ptosis (HP) until 45 min. The lower AM dose induced HP from 45 to 60 minutes and from 120 to 150 minutes, and the higher dose induced HP until 180 minutes. Data concerning changes in SLA were not conclusive. RMF or AM 0.4 caused a greater sedation than AM 0.1 until 20 min. After 20 minutes, the sedation caused by AM 0.4 was greater than that of RMF or AM 0.1. Romifidine caused consistent sedation until 45 minutes. The amitraz emulsion produced a dosedependent sedation until 180 minutes. Comparing to romifidine, the emulsion of amitraz induced a more substantial sedation. At dosages and dilution applied, amitraz is an effective sedative for horses.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)