974 resultados para reverse martensitic transformation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of Ag additions on the reverse martensitic transformation in the Cu-10 mass% Al alloy was studied using differential thermal analysis (DTA), optical (OM) and scanning electron microscopies (SEM) and X-ray diffractometry. The results indicated that Ag additions to the Cu-10 mass% Al alloy shift the equilibrium concentration to higher Al contents, allow to obtain both beta(1)' and beta' martensitic phases in equilibrium and that Ag precipitation is a process associated with the perlitic phase formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reverse martensitic transformation in the Cu-10 wt%Al-6 wt%Ag alloy was studied by classical differential thermal analysis (IDTA), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The results indicated that the presence of Ag in the Cu-10%Al alloy is responsible for the separation of the competitive reactions that occur during the reverse martensitic transformation and is also associated to an increase in the disordering degree at high temperatures, when compared with alloys without Ag addition. (c) 2005 Springer Science + Business Media, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the quantitative prediction of the volume fraction of martensitic transformation in a austenitic steel that undergoes impact with high strain rate. The coupling relations between strain, stress, strain rate, transformation rate and transformed fraction were derived from the OTC model and modified Bodner-Partom equations, where the impact process was considered as an adiabatic and no entropy-increased process (pressure less than or equal to 20GPa). The one-dimensional results were found to model and predict various experimental results obtained on 304 stainless steel under impact with high strain rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of the shape memory alloy NiTi in micro-electro-mechanical-systems (MEMSs) is extensive nowadays. In MEMS, complex while precise motion control is always vital. This makes the degradation of the functional properties of NiTi during cycling loading such as the appearance of residual strain become a serious problem to study, in particular for laser micro-welded NiTi in real applications. Although many experimental efforts have been put to study the mechanical properties of laser welded NiTi, surprisingly, up to the best of our understanding, there has not been attempts to quantitatively model the laser-welded NiTi under mechanical cycling in spite of the accurate prediction required in applications and the large number of constitutive models to quantify the thermo-mechanical behavior of shape memory alloys. As the first attempt to fill the gap, we employ a recent constitutive model, which describes the localized SIMT in NiTi under cyclic deformation; with suitable modifications to model the mechanical behavior of the laser welded NiTi under cyclic tension. The simulation of the model on a range of tensile cyclic deformation is consistent with the results of a series of experiments. From this, we conclude that the plastic deformation localized in the welded regions (WZ and HAZs) of the NiTi weldment can explain most of the extra amount of residual strain appearing in welded NiTi compared to the bare one. Meanwhile, contrary to common belief, we find that the ability of the weldment to memorize its transformation history, sometimes known as ‘return point memory’, still remains unchanged basically though the effective working limit of this ability reduces to within 6% deformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NiTi alloys have been widely used in the applications for micro-electro-mechanical-systems (MEMS), which often involve some precise and complex motion control. However, when using the NiTi alloys in MEMS application, the main problem to be considered is the degradation of functional property during cycling loading. This also stresses the importance of accurate prediction of the functional behavior of NiTi alloys. In the last two decades, a large number of constitutive models have been proposed to achieve the task. A portion of them focused on the deformation behavior of NiTi alloys under cyclic loading, which is a practical and non-negligible situation. Despite of the scale of modeling studies of the field in NiTi alloys, two experimental observations under uniaxial tension loading have not received proper attentions. First, a deviation from linearity well before the stress-induced martensitic transformation (SIMT) has not been modeled. Recent experiments confirmed that it is caused by the formation of stress-induced R phase. Second, the influence of the well-known localized Lüders-like SIMT on the macroscopic behavior of NiTi alloys, in particular the residual strain during cyclic loading, has not been addressed. In response, we develop a 1-D phenomenological constitutive model for NiTi alloys with two novel features: the formation of stress-induced R phase and the explicit modeling of the localized Lüders-like SIMT. The derived constitutive relations are simple and at the same time sufficient to describe the behavior of NiTi alloys. The accumulation of residual strain caused by R phase under different loading schemes is accurately described by the proposed model. Also, the residual strain caused by irreversible SIMT at different maximum loading strain under cyclic tension loading in individual samples can be explained by and fitted into a single equation in the proposed model. These results show that the proposed model successfully captures the behavior of R phase and the essence of localized SIMT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of new shape memory alloys with high martensitic transformation temperature increases the potential for applications. The development and use of these new alloys depends on the stability of the structure during cycling at high temperatures. If it is possible to guarantee that on alloys keeps the structure during cycling, then the alloy can be used because of the shape memory properties. The aim of this work is to obtain a kinetic model of the forward and backward martensitic transformation of two Cu-Al-Ni-Mn-Ti alloys. Differential scanning calorimetry has been performed in order to establish the kinetic stability of the martensite and the beta transformation. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new series of high temperature copper based shape memory alloys has recently been patented. These alloys contain 8-20 wt% Al, 1-20 wt% Ag, 0-2 wt% of a minor element (preferably Co), balance copper. The martensitic start transformation temperatures of these alloys are above 200 degrees C and, in some cases, they have good high temperature stability and may be useful in commercial applications where higher operating temperatures than those obtained from Cu-Zn-Al and Cu-Al-Ni shape memory alloys are required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The completeness of beta-phase decomposition reaction in the Cu-11wt%Al-xwt%Ag alloys (x = 0, 1, 2, and 3) was studied using differential scanning calorimetry (DSC), X-ray diffractometry (XRD), and optical microscopy (OM). The results indicated that beta-phase transformations are highly dependent on cooling rate and on the presence of Ag. on slow cooling, the silver presence prevents the beta- and beta(1)-phase decomposition; thus, inducing the martensitic phase formation. After rapid cooling, a new thermal event is observed and the reverse martensitic transformation is shifted to lower temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of Ag addition on the phase transformations that occur in the Cu-10% Al alloy was studied using differential thermal analysis, scanning electron and optical microscopies and energy dispersive X-ray analysis. The results indicated that Ag addition is responsible for the separation of the reverse martensitic transformation in two stages, and for the refinement of the α-phase grains. The relative amount of the β1 martensitic phase, retained on slow cooling (above 2 K min-1 of cooling rate), and the relative fraction of phase α2 are increased. The solubility limit of Ag in the matrix is close to 6 mass% and at this concentration the maximum stability of the β-phase is reached. © 2005 Akadémiai Kiadó, Budapest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on detailed x-ray diffraction and transmission electron microscopy we have found body-centered-cubic (bcc) Ni upon room-temperature rolling of nanocrystalline (nc) face-centered-cubic (fcc) Ni. The bcc phase forms via the Kurdjumov-Sachs (KS) martensitic transformation mechanism when the von Mises equivalent strain exceeds similar to 0.3, much higher than accessible in tensile testing. The fcc and bcc phases keep either the KS or the Nishiyama-Wasserman orientation relationship. Our results provide insights into the deformation physics in nc Ni, namely, the fcc-to-bcc phase transformation can also accommodate plasticity at large plastic strains. (C) 2008 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A constitutive model, based on an (n + 1)-phase mixture of the Mori-Tanaka average theory, has been developed for stress-induced martensitic transformation and reorientation in single crystalline shape memory alloys. Volume fractions of different martensite lattice correspondence variants are chosen as internal variables to describe microstructural evolution. Macroscopic Gibbs free energy for the phase transformation is derived with thermodynamics principles and the ensemble average method of micro-mechanics. The critical condition and the evolution equation are proposed for both the phase transition and reorientation. This model can also simulate interior hysteresis loops during loading/unloading by switching the critical driving forces when an opposite transition takes place.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the Cu-Al system, due to the sluggishness of the beta a dagger" (alpha + gamma(1)) eutectoid reaction, the beta phase can be retained metastably. During quenching, metastable beta alloys undergo a martensitic transformation to a beta' phase at Al low content. The ordering reaction beta a dagger" beta(1) precedes the martensitic transformation. The influence of Ag additions on the reactions containing the beta phase in the Cu-11mass%Al alloy was studied using differential scanning calorimetry and in situ X-ray diffractometry. The results indicated that, on cooling, two reactions are occurring in the same temperature range, the beta -> (alpha + gamma(1)) decomposition reaction and the beta -> beta(1) reaction, with different reaction mechanisms (diffusive for the former and ordering for the latter) and, consequently, with different reaction rates. For lower cooling rates, the dominant is the decomposition reaction and for higher cooling rates the ordering reaction prevails. on heating, the (alpha + gamma(1)) -> beta reverse eutectoid reaction occurs with a resulting beta phase saturated with alpha. The increase of Ag concentration retards the beta -> (alpha + gamma(1)) decomposition reaction and the beta -> beta(1) ordering reaction, which occurs in the same temperature range, becomes the predominant process.