996 resultados para quantification g
Resumo:
A new flow procedure based on multicommutation with chemiluminometric detection was developed to quantify gentamicin sulphate in pharmaceutical formulations. This approach is based on gentamicin's ability to inhibit the chemiluminometric reaction between luminol and hypochlorite in alkaline medium, causing a decrease in the analytical signal. The inhibition of the analytical signal is proportional to the concentration of gentamicin sulphate, within a linear range of 1 to 4 mu g mL(-1) with a coefficient variation <3%. A sample throughput of 55 samples h(-1) was obtained. The developed method is sensitive, simple, with low reagent consumption, reproducible, and inexpensive, and when applied to the analysis of pharmaceutical formulations (eye drops and injections) it gave results with RSD between 1.10 and 4.40%.
Resumo:
Objective To test the hypothesis that 12-lead ECG QRS scoring quantifies myocardial scar and correlates with disease severity in Chagas' heart disease. Design Patients underwent 12-lead ECG for QRS scoring and cardiac magnetic resonance with late gadolinium enhancement (CMR-LGE) to assess myocardial scar. Setting University of Sao Paulo Medical School, Sao Paulo, Brazil. Patients 44 Seropositive patients with Chagas' disease without a history of myocardial infarction and at low risk for coronary artery disease. Main outcome measures Correlation between QRS score, CMR-LGE scar size and left ventricular ejection fraction. Relation between QRS score, heart failure (HF) class and history of ventricular tachycardia (VT). Results QRS score correlated directly with CMR-LGE scar size (R=0.69, p<0.0001) and inversely with left ventricular ejection fraction (R=-0.54, p=0.0002), which remained significant in the subgroup with conduction defects. Patients with class II or III HF had significantly higher QRS scores than those with class I HF (5.1 +/- 3.4 vs 2.1 +/- 3.1 QRS points (p=0.002)) and patients with a history of VT had significantly higher QRS scores than those without a history of VT (5.3 +/- 3.2% vs 2.6 +/- 3.4 QRS points (p=0.02)). A QRS score >= 2 points had particularly good sensitivity and specificity (95% and 83%, respectively) for prediction of large CMR-LGE, and a QRS score >= 7 points had particularly high specificity (92% and 89%, respectively) for predicting significant left ventricular dysfunction and history of VT. Conclusions The wide availability of 12-lead ECG makes it an attractive screening tool and may enhance clinical risk stratification of patients at risk for more severe, symptomatic Chagas' heart disease.
Resumo:
Brazilian propolis contains several phenolic compounds among which 5 diprenyl-4-hydroxycinnamic acid (artepillin-C) is commonly found in areas where flora is rich in Baccharis species. The quantification of artepillin-C has become an important factor as an indicator of Brazilian propolis quality and the compound may be used as a chemical marker for quality control in exportating green propolis. This work was to validate the method and evaluate the content of artepillin-C from 33 samples collected in different Brazilian regions. The method used was HPLC with UV-vis detection and a reversed-phase C-18 Column. The validation parameters studied were: linearity, accuracy, precision, quantification and detection limits. The results obtained were: detection limit = 0.0036 mu g/mL, quantification limit = 0.012 mu g/mL, accuracy = 0.0064 and 0.078, recovery 98-102%. Artepillin-C content varied from 0 to 11% depending on the geographical origin. Propolis from the southeast region presented the highest level of artepillin-C (5.0-11.0%). Whist that from the northeast region did not show any artepillin-C. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Introduction - Baccharis dracunculifolia, which has great potential for the development of new phytotherapeutic medicines, is the most important botanical source of the southeastern Brazilian propolis, known as green propolis on account of its color. Objective - To develop a reliable reverse-phase HPLC chromatographic method for the analysis of phenolic compounds in both B. dracunculifolia raw material and its hydroalcoholic extracts. Methodology - The method utilised a C(18) CLC-ODS (M) (4.6 x 250 mm) column with nonlinear gradient elution and UV detection at 280 nm. A procedure for the extraction of phenolic compounds using aqueous ethanol 90%, with the addition of veratraldehyde as the internal standard, was developed allowing the quantification of 10 compounds: caffeic acid, coumaric acid, ferulic acid, cinnamic acid, aromadendrin-4`-methyl ether, isosakuranetin, drupanin, artepillin C, baccharin and 2,2-dimethyl-6-carboxyethenyl-2H-1-benzopyran acid. Results - The developed method gave a good detection response with linearity in the range 20.83-800 mu g/mL and recovery in the range 81.25-93.20%, allowing the quantification of the analysed standards. Conclusion - The method presented good results for the following parameters: selectivity, linearity, accuracy, precision, robustness, as well as limit of detection and limit of quantitation. Therefore, this method could be considered as an analytical tool for the quality control of B. dracunculifolia raw material and its products in both cosmetic and pharmaceutical companies. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
The Green Fluorescent Protein (GFP) from Aequorea victor-in has begun to be used as a reporter protein in plants. It is particularly useful as GFP fluorescence can be detected in a non-destructive manner, whereas detection of enzyme-based reporters often requires destruction of the plant tissue. The use of GFP as a reporter enables transgenic plant tissues to be screened in vivo at any growth stage. Quantification of GFP in transgenic plant extracts will increase the utility of GFP as a reporter protein. We report herein the quantification of a mGFP5-ER Variant in tobacco leaf extracts by UV excitation and a sGFP(S65T) variant in sugarcane leaf and callus extracts by blue light excitation using the BioRad VersaFluor(TM) Fluorometer System or the Labsystems Fluoroskan Ascent FL equipped with a narrow band emission filter (510 +/- 5 nm). The GFP concentration in transgenic plant extracts was determined from a GFP-standard series prepared in untransformed plant extract with concentrations ranging from 0.1 to 4 mu g/ml of purified rGFP. Levels of sgfp(S65T) expression, driven by the maize ubiquitin promoter, in sugarcane calli and leaves ranged up to 0.525 mu g and 2.11 mu g sGFP(S65T) per mg of extractable protein respectively. In tobacco leaves the expression of mgfPS-ER, driven by the cauliflower mosaic virus (CaMV) 35S promoter, ranged up to 7.05 mu g mGFP5-ER per mg extractable protein.
Resumo:
A sensitive and reproducible stir bar-sorptive extraction and high-performance liquid chromatography-UV detection (SBSE/HPLC-UV) method for therapeutic drug monitoring of carbamazepine, carbamazepine-10,11-epoxide, phenytoin and phenobarbital in plasma samples is described and compared with a liquid:liquid extraction (LLE/HPLC-UV) method. Important factors in the optimization of SBSE efficiency such as pH, extraction time and desorption conditions (solvents, mode magnetic stir, mode ultrasonic stir, time and number of steps) assured recoveries ranging from 72 to 86%, except for phenytoin (62%). Separation was obtained using a reverse phase C-18 column with UV detection (210 nm). The mobile phase consisted of water: acetonitrile (78:22, v/v). The SBSE/HPLC-UV method was linear over a working range of 0.08-40.0 mu g mL(-1) for carbamazepine, carbamazepine-10,11-epoxide and phenobarbital and 0.125-40.0 mu g mL(-1) for phenytoin, The intra-assay and inter-assay precision and accuracy were studied at three concentrations (1.0, 4.0 and 20.0 mu g mL(-1)). The intra-assay coefficients of variation (CVs) for all compounds were less than 8.8% and all inter-CVs were less than 10%. Limits of quantification were 0.08 mu g mL(-1) for carbamazepine, carbamazepine-10,11-epoxide and phenobarbital and 0.125 mu g mL(-1) for phenytoin. No interference of the drugs normally associated with antiepileptic drugs was observed. Based on figures of merit results, the SBSE/HPLC-UV proved adequate for antiepileptic drugs analyses from therapeutic levels. This method was successfully applied to the analysis of real samples and was as effective as the LLE/HPLC-UV method. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Clinical applications of quantitative computed tomography (qCT) in patients with pulmonary opacifications are hindered by the radiation exposure and by the arduous manual image processing. We hypothesized that extrapolation from only ten thoracic CT sections will provide reliable information on the aeration of the entire lung. CTs of 72 patients with normal and 85 patients with opacified lungs were studied retrospectively. Volumes and masses of the lung and its differently aerated compartments were obtained from all CT sections. Then only the most cranial and caudal sections and a further eight evenly spaced sections between them were selected. The results from these ten sections were extrapolated to the entire lung. The agreement between both methods was assessed with Bland-Altman plots. Median (range) total lung volume and mass were 3,738 (1,311-6,768) ml and 957 (545-3,019) g, the corresponding bias (limits of agreement) were 26 (-42 to 95) ml and 8 (-21 to 38) g, respectively. The median volumes (range) of differently aerated compartments (percentage of total lung volume) were 1 (0-54)% for the nonaerated, 5 (1-44)% for the poorly aerated, 85 (28-98)% for the normally aerated, and 4 (0-48)% for the hyperaerated subvolume. The agreement between the extrapolated results and those from all CT sections was excellent. All bias values were below 1% of the total lung volume or mass, the limits of agreement never exceeded +/- 2%. The extrapolation method can reduce radiation exposure and shorten the time required for qCT analysis of lung aeration.
Resumo:
Background: Color Doppler myocardial imaging (CDMI) allows the calculation of local longitudinal or radial strain rate (SR) and strain (epsilon). The aims of this study were to determine the feasibility and reproducibility of longitudinal and radial SR and epsilon in neonates during the first hours of life and to establish reference values. Methods: Data were obtained from 55 healthy neonates (29 male; mean age, 20 +/- 14 hours; mean birth weight, 3,174 +/- 374 g). Apical and parasternal views quantified regional longitudinal and radial SR and epsilon in differing ventricular wall segments. Values at peak systole, early diastole, and late diastole were calculated from the extracted curves. CDMI data acquired at 300 +/- 50 frames/s were analyzed offline. Three consecutive cardiac cycles were measured during normal respiration. The timing of specific systolic or diastolic regional events was determined. Multiple comparisons between walls and segments were made. Results: Left ventricular (LV) longitudinal deformation showed basal differences compared with apical segments within one specific wall. Right ventricular (RV) longitudinal deformation was not homogeneous, with significant differences between basal and apical segments. Longitudinal 3 values were higher in the RV free basal and middle wall segments compared with the left ventricle. In the RV free wall apical segment, longitudinal SR and 3 were maximal. LV systolic SR and epsilon values were higher radially compared with longitudinally (radial peak systolic SR midportion, 2.9 +/- 0.6 s(-1); radial peak systolic epsilon 53.8 +/- 19%; longitudinal peak systolic SR midportion, -1.8 +/- 0.5 s(-1); longitudinal peak systolic epsilon, -24.8 +/- 3%; P < .01). Longitudinal systolic epsilon and SR interobserver variability values were 1.2% and 0.7%, respectively. Conclusion: Ultrasound-based SR and 3 imaging is a practical and reproducible clinical technique in neonates, allowing the calculation of regional longitudinal and radial deformation in RV and LV segments. These regional SR and epsilon indices represent new, noninvasive parameters that can quantify normal neonate regional cardiac function. Independent from visual interpretation, they can be used as reference values for diagnosis in ill neonates. (J Am Soc Echocardiogr 2009;22:369-375.)
Resumo:
Radiation dose calculations in nuclear medicine depend on quantification of activity via planar and/or tomographic imaging methods. However, both methods have inherent limitations, and the accuracy of activity estimates varies with object size, background levels, and other variables. The goal of this study was to evaluate the limitations of quantitative imaging with planar and single photon emission computed tomography (SPECT) approaches, with a focus on activity quantification for use in calculating absorbed dose estimates for normal organs and tumors. To do this we studied a series of phantoms of varying complexity of geometry, with three radionuclides whose decay schemes varied from simple to complex. Four aqueous concentrations of (99m)Tc, (131)I, and (111)In (74, 185, 370, and 740 kBq mL(-1)) were placed in spheres of four different sizes in a water-filled phantom, with three different levels of activity in the surrounding water. Planar and SPECT images of the phantoms were obtained on a modern SPECT/computed tomography (CT) system. These radionuclides and concentration/background studies were repeated using a cardiac phantom and a modified torso phantom with liver and ""tumor"" regions containing the radionuclide concentrations and with the same varying background levels. Planar quantification was performed using the geometric mean approach, with attenuation correction (AC), and with and without scatter corrections (SC and NSC). SPECT images were reconstructed using attenuation maps (AM) for AC; scatter windows were used to perform SC during image reconstruction. For spherical sources with corrected data, good accuracy was observed (generally within +/- 10% of known values) for the largest sphere (11.5 mL) and for both planar and SPECT methods with (99m)Tc and (131)I, but were poorest and deviated from known values for smaller objects, most notably for (111)In. SPECT quantification was affected by the partial volume effect in smaller objects and generally showed larger errors than the planar results in these cases for all radionuclides. For the cardiac phantom, results were the most accurate of all of the experiments for all radionuclides. Background subtraction was an important factor influencing these results. The contribution of scattered photons was important in quantification with (131)I; if scatter was not accounted for, activity tended to be overestimated using planar quantification methods. For the torso phantom experiments, results show a clear underestimation of activity when compared to previous experiment with spherical sources for all radionuclides. Despite some variations that were observed as the level of background increased, the SPECT results were more consistent across different activity concentrations. Planar or SPECT quantification on state-of-the-art gamma cameras with appropriate quantitative processing can provide accuracies of better than 10% for large objects and modest target-to-background concentrations; however when smaller objects are used, in the presence of higher background, and for nuclides with more complex decay schemes, SPECT quantification methods generally produce better results. Health Phys. 99(5):688-701; 2010
Resumo:
Hypertension afflicts 25% of the general population and over 50% of the elderly. In the present work, arterial spin labeling MRI was used to non-invasively quantify regional cerebral blood flow (CBE), cerebrovascular resistance and CO(2) reactivity in spontaneously hypertensive rats (SHR) and in normotensive Wistar Kyoto rats (WKY), at two different ages (3 months and 10 months) and under the effects of two anesthetics, alpha-chloralose and 2% isoflurane (1.5 MAC). Repeated CBE measurements were highly consistent, differing by less than 10% and 18% within and across animals, respectively. Under alpha-chloralose, whole brain CBE at normocapnia did not differ between groups (young WKY: 61 3 ml/100 g/min; adult WKY: 62 +/- 4 ml/100 g/min; young SHR: 70 +/- 9 ml/100 g/min: adult SHR: 69 8 ml/100 g/min), indicating normal cerebral autoregulation in SHR. At hypercapnia, CBE values increased significantly, and a linear relationship between CBE and PaCO(2) levels was observed. In contrast, 2% isoflurane impaired cerebral autoregulation. Whole brain CBE in SHR was significantly higher than in WKY rats at normocapnia (young SHR: 139 +/- 25 ml/100 g/min; adult SHR: 104 +/- 23 ml/100 g/min; young WKY: 55 +/- 9 ml/100 g/min; adult WKY: 71 +/- 19 ml/100 g/min). CBE values increased significantly with increasing CO(2): however, there was a clear saturation of CBF at PaCO(2) levels greater than 70 mm Hg in both young and adult rats, regardless of absolute CBE values, suggesting that isoflurane interferes with the vasoclilatory mechanisms of CO(2). This behavior was observed for both cortical and subcortical structures. Under either anesthetic, CO(2) reactivity values in adult SHR were decreased, confirming that hypertension, when combined with age, increases cerebrovascular resistance and reduces cerebrovascular compliance. Published by Elsevier Inc.
Resumo:
Aims: To quantify Listeria levels on the shell and flesh of artificially contaminated cooked prawns after peeling, and determine the efficacy of Listeria innocua as a model for L. monocytogenes in this system. Methods and Results: A L. monocytogenes and L. innocua strain were inoculated separately onto cooked black tiger prawns using two protocols ( immersion or swabbing with incubation). Prawns were peeled by two methods ( gloved hand or scalpel and forceps) and numbers of Listeria on shells, flesh and whole prawn controls were determined. Prawns were exposed to crystal violet dye to assess the penetration of liquids. Regardless of preparation method or bacterial strain there were ca 1log(10) CFU more Listeria per shell than per peeled prawn. Dye was able to penetrate to the flesh in all cases. Conclusions: Shell-on prawns may be only slightly safer than shell-off prawns. Listeria innocua is an acceptable model for L. monocytogenes in this system. Significance and Impact of the Study: Reduced risk from L. monocytogenes on prawns can only be assured by adequate hygiene or heating.
Resumo:
In this study, an attempt was made in order to measure and evaluate the eco-efficiency performance of a pultruded composite processing company. For this purpose the recommendations of World Business Council for Sustainable Development (WCSD) and the directives of ISO 14301 standard were followed and applied. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent eco-efficiency ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures, at both upstream and downstream of the production process, namely: i) Adoption of a new heating system for pultrusion die-tool in the manufacturing process, more effective and with minor heat losses; ii) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
Resumo:
In this study, an attempt was made in order to measure and evaluate the eco-efficiency performance of a pultruded composite processing company. For this purpose the recommendations of World Business Council for Sustainable Development (WCSD) and the directives of ISO 14301 standard were followed and applied. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent ecoefficiency’s ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures, both in upstream and downstream of the production process, namely: a) Adoption of new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; c) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
Resumo:
Dissertation for the Master Degree in Technology and Food Security