1000 resultados para process equipments
Resumo:
Diplomityön tavoitteena on ollut kehittää sähköteknisten laitteiden kunnossapitoa sinkkitehtaalla. Kokonaisuus on laaja ja laitteita paljon. Suuri kunnossapitobudjetti koostuu pienistä palasista. Kehitystyötä on pyritty tekemään käytännönläheisin ja helposti toteutettavin menetelmin, joissa voidaan mahdollisimman paljon hyödyntää sinkkitehtaan oman sähkökunnossapidon resursseja. Tämä kehittää myös henkilöstön laitetuntemusta. Kunnossapito-ohjelma pyritään pitämään riittävän kevyenä ja edullisena toteuttaa. Teoreettisen pohdiskelun ja huoltomenetelmien suunnittelun jälkeen kunnossapidon käytännön toteuttamiseksi on rakennettu tehtaan ATK-järjestelmään työmääräimiä, jotka pohjautuvat työn aikana kirjoitettuihin työohjeisiin. Työn alussa on selvitetty sähköturvallisuusmääräysten asettamia vaatimuksia. Suurella osalla huoltotoimenpiteistä pyritään parantamaan sähköturvallisuutta. Muilta osin työ keskittyy sähkökeskustiloihin ja moottorikäyttöihin, osastokohtaisiin prosessilaitteisiin ja tehtaalla oleviin tärkeisiin, muttaprosessiin varsinaisesti kuulumattomiin laitteisiin. Niiden käsittelyn yhteydessä esitellään myös huollossa käytettäviä menetelmiä, mittauksia ja tarkastuksia.
Resumo:
Myllykoski Paper Oy:n hiokkeen laadussa ja prosessivesien ominaisuuksissa tapahtuu vaihtelua ajan suhteen. Tämä käy ilmi useiden vuosien aikana kerätyistä laatuseurantatiedoista. Diplomityön tavoitteena oli selvittää hiokkeen ja kierto-vesien laatuun vaikuttavat tekijät ja kehittää laadunvaihtelua hillitseviä toimenpi-teitä. Työn kirjallisuusosassa pyrittiin löytämään tekijöitä, jotka voivat aiheuttaa valmiin hiokkeen laatuun vaihtelua. Lähtökohtaisesti laatuvaihteluita aiheuttavat tekijät jaettiin raaka-aine- tai prosessivaihteluksi. Työn kokeellisessa osassa selvitettiin eri hioke- ja prosessivesiominaisuuksien kehittymistä tarkastelemalla eri mittaussuureista kerättyjä aineistoja erilaisin aika-välein. Aluksi tarkasteltiin hiokkeen ja vesien ominaisuuksia viiden vuoden ajan-jaksolla, josta siirryttiin tarkastelemaan lyhyempiä aikavälejä. Käytetty mittausaineisto oli peräisin DW-tietovarastosta ja PHD-reaaliaikatietokannasta. Työn tuloksista kävi muun muassa ilmi, että painehiokkeen lujuusominaisuudet ovat hienoisesti alentuneet viimeisen viiden vuoden aikana. Muutos selittyy hiokkeen pitkäkuituosuuden ja kuitupuun keskimääräisen läpimitan alenemisella. Lisäksi valkaisemattomien hiokkeiden vaaleudet ovat alentuneet samallakun prosessivedet ovat muuttuneet likaisemmiksi. Kehitykseen on vaikuttanut vesikiertojen kasvanut sulkemisaste ja uusi peroksidivalkaisulaitos. Jatkotoimenpide-ehdotukset painottuvat pääosin vesiajotilanteiden hallintaan. Vesiajoaiheuttaa aina suuria muutoksia niin hiokkeen kuin myös kiertovesien laatuun.
Resumo:
Diplomityössä kehitettiin ioninvaihtoon perustuva ammoniakin talteenottoprosessi NSSC (Neutral Sulphite Semi Chemical) -prosessin haihduttamon lauhteille. Tarkoituksena oli saada aallotuskartonkitehtaan kemi-kaalikiertoa suljettua ja sitä kautta ammoniakkipäästöjä vähennettyä. Ammoniakki tuli ottaa hyötymuodossa (ammoniakkihöyry tai ammoniumsulfiitti) talteen. Ammoniumsulfiittiliuosta käytetään NSSC-prosessissa keittonesteenä. Kirjallisuusosassa selvitetään strippaukseen perustuvia ammoniakin talteenottomahdollisuuksia. Tutkitaan ioninvaihdon teoriaa ja ammoniumin talteenottoon sopivien ioninvaihtomateriaalien ominaisuuksia ioninvaihtajina. Lisäksi esitetään ioninvaihtoprosesseihin liittyviä laitteistoratkaisuja ja prosessiolosuhteita. Työn kokeellisessa osassa on yleiskuvaus Powerflute Oy Savon Sellun prosesseista ja selvitetään ammoniakin merkitystä tehtaalle. Laboratoriokokein tutkittiin orgaanisten kationihartsien sekä epäorgaanisen luonnon zeoliitin soveltuvuutta ammoniumionien vaihtoon esihaihduttamon lauhteesta. Ammoniakin talteenottoprosessin toimivuutta teollisessa mittakaavassa selvitettiin rakennetulla pilotlaitteistolla suoritettujen kokeiden avulla. Lopuksi tehtiin ammoniakin talteenottoprosessin scale-up: laskettiin prosessin talteenottokapasiteetti, arvioitiin kustannuksia sekä annettiin lausunto prosessin toteutettavuudesta. Laboratoriokokeiden perusteella luonnon zeoliitti ja heikosti hapan ioninvaihtohartsi eivät sovellu ammoniumionien vaihtoon NSSC haihduttamon lauhteista. Vahvasti hapan kationihartsi toimi ammoniumin talteenotossa parhaiten, joten se valittiin pilotkokeiden ioninvaihtomateriaaliksi. Pilotkokeissa ioninvaihtomateriaaliin saatiin sidottua ammoniumia noin 30 g NH4+ / dm3 hartsia, kun materiaalin teoreettinen ioninvaihtokapasiteetti oli 32 g NH4+ / dm3 hartsia. Ammoniumin läpäisykäyrien muotoon vaikutti suuresti syöttölauhteen virtausnopeus ja ammoniumpitoisuus. Ioninvaihtomateriaalipedin syvyydellä ei ollut niinkään merkitystä. Pilotkokeiden regenerointitavoista tehokkaimmaksi osoittautui höyrystrippaus, jossa saavutettiin noin 90 %:n talteenottotehokkuus. Rikkihapokekäsittelyllä talteenottotehokkuus jäi 50 %:iin. Teollisen mittakaavan laitoksella voidaan vuosittain regenerointitavasta riippuen ottaa talteen esihaihdut-tamon lauhteesta noin 100-150 tonnia ammoniakkia. Prosessin käyttökustannukset ovat talteenotetusta ammoniakista saataviin säästöihin verrattuna suuret ja niihin vaikuttaa merkittävästi ioninvaihtohartsin käyttöikä sekä regenerointikemikaalien kulutus. Osittaisella kemikaalikierron sulkemisella saavutetaan NSSC-prosessissa sekundäärietuja, joiden vaikutuksen merkittävyys pitäisi tarkentaa lisätutkimuksilla.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
In such territories where food production is mostly scattered in several small / medium size or even domestic farms, a lot of heterogeneous residues are produced yearly, since farmers usually carry out different activities in their properties. The amount and composition of farm residues, therefore, widely change during year, according to the single production process periodically achieved. Coupling high efficiency micro-cogeneration energy units with easy handling biomass conversion equipments, suitable to treat different materials, would provide many important advantages to the farmers and to the community as well, so that the increase in feedstock flexibility of gasification units is nowadays seen as a further paramount step towards their wide spreading in rural areas and as a real necessity for their utilization at small scale. Two main research topics were thought to be of main concern at this purpose, and they were therefore discussed in this work: the investigation of fuels properties impact on gasification process development and the technical feasibility of small scale gasification units integration with cogeneration systems. According to these two main aspects, the present work was thus divided in two main parts. The first one is focused on the biomass gasification process, that was investigated in its theoretical aspects and then analytically modelled in order to simulate thermo-chemical conversion of different biomass fuels, such as wood (park waste wood and softwood), wheat straw, sewage sludge and refuse derived fuels. The main idea is to correlate the results of reactor design procedures with the physical properties of biomasses and the corresponding working conditions of gasifiers (temperature profile, above all), in order to point out the main differences which prevent the use of the same conversion unit for different materials. At this scope, a gasification kinetic free model was initially developed in Excel sheets, considering different values of air to biomass ratio and the downdraft gasification technology as particular examined application. The differences in syngas production and working conditions (process temperatures, above all) among the considered fuels were tried to be connected to some biomass properties, such elementary composition, ash and water contents. The novelty of this analytical approach was the use of kinetic constants ratio in order to determine oxygen distribution among the different oxidation reactions (regarding volatile matter only) while equilibrium of water gas shift reaction was considered in gasification zone, by which the energy and mass balances involved in the process algorithm were linked together, as well. Moreover, the main advantage of this analytical tool is the easiness by which the input data corresponding to the particular biomass materials can be inserted into the model, so that a rapid evaluation on their own thermo-chemical conversion properties is possible to be obtained, mainly based on their chemical composition A good conformity of the model results with the other literature and experimental data was detected for almost all the considered materials (except for refuse derived fuels, because of their unfitting chemical composition with the model assumptions). Successively, a dimensioning procedure for open core downdraft gasifiers was set up, by the analysis on the fundamental thermo-physical and thermo-chemical mechanisms which are supposed to regulate the main solid conversion steps involved in the gasification process. Gasification units were schematically subdivided in four reaction zones, respectively corresponding to biomass heating, solids drying, pyrolysis and char gasification processes, and the time required for the full development of each of these steps was correlated to the kinetics rates (for pyrolysis and char gasification processes only) and to the heat and mass transfer phenomena from gas to solid phase. On the basis of this analysis and according to the kinetic free model results and biomass physical properties (particles size, above all) it was achieved that for all the considered materials char gasification step is kinetically limited and therefore temperature is the main working parameter controlling this step. Solids drying is mainly regulated by heat transfer from bulk gas to the inner layers of particles and the corresponding time especially depends on particle size. Biomass heating is almost totally achieved by the radiative heat transfer from the hot walls of reactor to the bed of material. For pyrolysis, instead, working temperature, particles size and the same nature of biomass (through its own pyrolysis heat) have all comparable weights on the process development, so that the corresponding time can be differently depending on one of these factors according to the particular fuel is gasified and the particular conditions are established inside the gasifier. The same analysis also led to the estimation of reaction zone volumes for each biomass fuel, so as a comparison among the dimensions of the differently fed gasification units was finally accomplished. Each biomass material showed a different volumes distribution, so that any dimensioned gasification unit does not seem to be suitable for more than one biomass species. Nevertheless, since reactors diameters were found out quite similar for all the examined materials, it could be envisaged to design a single units for all of them by adopting the largest diameter and by combining together the maximum heights of each reaction zone, as they were calculated for the different biomasses. A total height of gasifier as around 2400mm would be obtained in this case. Besides, by arranging air injecting nozzles at different levels along the reactor, gasification zone could be properly set up according to the particular material is in turn gasified. Finally, since gasification and pyrolysis times were found to considerably change according to even short temperature variations, it could be also envisaged to regulate air feeding rate for each gasified material (which process temperatures depend on), so as the available reactor volumes would be suitable for the complete development of solid conversion in each case, without even changing fluid dynamics behaviour of the unit as well as air/biomass ratio in noticeable measure. The second part of this work dealt with the gas cleaning systems to be adopted downstream the gasifiers in order to run high efficiency CHP units (i.e. internal engines and micro-turbines). Especially in the case multi–fuel gasifiers are assumed to be used, weightier gas cleaning lines need to be envisaged in order to reach the standard gas quality degree required to fuel cogeneration units. Indeed, as the more heterogeneous feed to the gasification unit, several contaminant species can simultaneously be present in the exit gas stream and, as a consequence, suitable gas cleaning systems have to be designed. In this work, an overall study on gas cleaning lines assessment is carried out. Differently from the other research efforts carried out in the same field, the main scope is to define general arrangements for gas cleaning lines suitable to remove several contaminants from the gas stream, independently on the feedstock material and the energy plant size The gas contaminant species taken into account in this analysis were: particulate, tars, sulphur (in H2S form), alkali metals, nitrogen (in NH3 form) and acid gases (in HCl form). For each of these species, alternative cleaning devices were designed according to three different plant sizes, respectively corresponding with 8Nm3/h, 125Nm3/h and 350Nm3/h gas flows. Their performances were examined on the basis of their optimal working conditions (efficiency, temperature and pressure drops, above all) and their own consumption of energy and materials. Successively, the designed units were combined together in different overall gas cleaning line arrangements, paths, by following some technical constraints which were mainly determined from the same performance analysis on the cleaning units and from the presumable synergic effects by contaminants on the right working of some of them (filters clogging, catalysts deactivation, etc.). One of the main issues to be stated in paths design accomplishment was the tars removal from the gas stream, preventing filters plugging and/or line pipes clogging At this scope, a catalytic tars cracking unit was envisaged as the only solution to be adopted, and, therefore, a catalytic material which is able to work at relatively low temperatures was chosen. Nevertheless, a rapid drop in tars cracking efficiency was also estimated for this same material, so that an high frequency of catalysts regeneration and a consequent relevant air consumption for this operation were calculated in all of the cases. Other difficulties had to be overcome in the abatement of alkali metals, which condense at temperatures lower than tars, but they also need to be removed in the first sections of gas cleaning line in order to avoid corrosion of materials. In this case a dry scrubber technology was envisaged, by using the same fine particles filter units and by choosing for them corrosion resistant materials, like ceramic ones. Besides these two solutions which seem to be unavoidable in gas cleaning line design, high temperature gas cleaning lines were not possible to be achieved for the two larger plant sizes, as well. Indeed, as the use of temperature control devices was precluded in the adopted design procedure, ammonia partial oxidation units (as the only considered methods for the abatement of ammonia at high temperature) were not suitable for the large scale units, because of the high increase of reactors temperature by the exothermic reactions involved in the process. In spite of these limitations, yet, overall arrangements for each considered plant size were finally designed, so that the possibility to clean the gas up to the required standard degree was technically demonstrated, even in the case several contaminants are simultaneously present in the gas stream. Moreover, all the possible paths defined for the different plant sizes were compared each others on the basis of some defined operational parameters, among which total pressure drops, total energy losses, number of units and secondary materials consumption. On the basis of this analysis, dry gas cleaning methods proved preferable to the ones including water scrubber technology in al of the cases, especially because of the high water consumption provided by water scrubber units in ammonia adsorption process. This result is yet connected to the possibility to use activated carbon units for ammonia removal and Nahcolite adsorber for chloride acid. The very high efficiency of this latter material is also remarkable. Finally, as an estimation of the overall energy loss pertaining the gas cleaning process, the total enthalpy losses estimated for the three plant sizes were compared with the respective gas streams energy contents, these latter obtained on the basis of low heating value of gas only. This overall study on gas cleaning systems is thus proposed as an analytical tool by which different gas cleaning line configurations can be evaluated, according to the particular practical application they are adopted for and the size of cogeneration unit they are connected to.
Resumo:
A sustainable manufacturing process must rely on an also sustainable raw materials and energy supply. This paper is intended to show the results of the studies developed on sustainable business models for the minerals industry as a fundamental previous part of a sustainable manufacturing process. As it has happened in other economic activities, the mining and minerals industry has come under tremendous pressure to improve its social, developmental, and environmental performance. Mining, refining, and the use and disposal of minerals have in some instances led to significant local environmental and social damage. Nowadays, like in other parts of the corporate world, companies are more routinely expected to perform to ever higher standards of behavior, going well beyond achieving the best rate of return for shareholders. They are also increasingly being asked to be more transparent and subject to third-party audit or review, especially in environmental aspects. In terms of environment, there are three inter-related areas where innovation and new business models can make the biggest difference: carbon, water and biodiversity. The focus in these three areas is for two reasons. First, the industrial and energetic minerals industry has significant footprints in each of these areas. Second, these three areas are where the potential environmental impacts go beyond local stakeholders and communities, and can even have global impacts, like in the case of carbon. So prioritizing efforts in these areas will ultimately be a strategic differentiator as the industry businesses continues to grow. Over the next forty years, world?s population is predicted to rise from 6.300 million to 9.500 million people. This will mean a huge demand of natural resources. Indeed, consumption rates are such that current demand for raw materials will probably soon exceed the planet?s capacity. As awareness of the actual situation grows, the public is demanding goods and services that are even more environmentally sustainable. This means that massive efforts are required to reduce the amount of materials we use, including freshwater, minerals and oil, biodiversity, and marine resources. It?s clear that business as usual is no longer possible. Today, companies face not only the economic fallout of the financial crisis; they face the substantial challenge of transitioning to a low-carbon economy that is constrained by dwindling natural resources easily accessible. Innovative business models offer pioneering companies an early start toward the future. They can signal to consumers how to make sustainable choices and provide reward for both the consumer and the shareholder. Climate change and carbon remain major risk discontinuities that we need to better understand and deal with. In the absence of a global carbon solution, the principal objective of any individual country should be to reduce its global carbon emissions by encouraging conservation. The mineral industry internal response is to continue to focus on reducing the energy intensity of our existing operations through energy efficiency and the progressive introduction of new technology. Planning of the new projects must ensure that their energy footprint is minimal from the start. These actions will increase the long term resilience of the business to uncertain energy and carbon markets. This focus, combined with a strong demand for skills in this strategic area for the future requires an appropriate change in initial and continuing training of engineers and technicians and their awareness of the issue of eco-design. It will also need the development of measurement tools for consistent comparisons between companies and the assessments integration of the carbon footprint of mining equipments and services in a comprehensive impact study on the sustainable development of the Economy.
Resumo:
Systemic lupus erythematosus is an autoimmune disease that causes many psychological repercussions that have been studied through qualitative research. These are considered relevant, since they reveal the amplitude experienced by patients. Given this importance, this study aims to map the qualitative production in this theme, derived from studies of experiences of adult patients of both genders and that had used as a tool a semi-structured interview and/or field observations, and had made use of a sampling by a saturation criterion to determine the number of participants in each study. The survey was conducted in Pubmed, Lilacs, Psycinfo e Cochrane databases, searching productions in English and Portuguese idioms published between January 2005 and June 2012. The 19 revised papers that have dealt with patients in the acute phase of the disease showed themes that were categorized into eight topics that contemplated the experienced process at various stages, from the onset of the disease, extending through the knowledge of the diagnosis and the understanding of the manifestations of the disease, drug treatment and general care, evolution and prognosis. The collected papers also point to the difficulty of understanding, of the patients, on what consists the remission phase, revealing also that this is a clinical stage underexplored by psychological studies.
Resumo:
20
Resumo:
The cleanness level in fresh market tomatoes cleaning equipment is essential for consumer acceptance and conservation of product quality. However, the washing process in cleaning current equipments demands an excessive volume of water, leading to serious economic and environmental concerns. The objective of this work was to contribute with technical information for the washing system optimization. The conventional washing system currently used in cleaning equipment, which consists of perforated PVC pipes, was compared with a proposed system which uses commercial sprays. Characteristic curves (flow rate versus pressure) for both systems were determined in lab conditions and the respective water consumptions were compared. The results confirmed the excess of water consumption in the conventional washing systems, and the proposed system proved that is possible to reduce it, and the use of sprays allowed the rational use of the water.
Resumo:
Development of processing technology and equipments requires new methods and better quality of the processed product. In the continuous drying process, utilization of equipments that promotes an increment in the transfer coefficients becomes of the major interest. The use of vibrational energy has been recommended to the dispersed materials. Such method is based on the use of vibrational energy applied to disperse media. Thus, a literature review on the mass transfer and drying in vibro-fluidized beds was carried out, showing experimental results and mathematical modeling.
Resumo:
On the last years, in Brazil, sorting and classifying fruits and vegetables using packing lines have increased. This work aimed at characterizing the cleaning process for fresh market tomatoes at two packing lines, one imported and one national located at Campinas, São Paulo State. Characterization included data, number, types and brushes velocity, water use, fruit standing time and cleaning efficiency. Standing time was measured correlating to fruit diameter (CEAGESP). For measuring cleaning efficiency an equipment was developed that was mainly composed of a ring involved with white cloth. Samples were taken before and after the cleaning step and evaluated using a colorimeter HUNTER Lab. The results showed a strong difference between the two equipments. The imported equipment showed lower number on brushes and rotation than national one, however a higher water consumption. For imported equipments this relation was not found. Both packing lines showed the same cleaning efficiency. Cleaning efficiency is related to be an interaction among the studies parameters, and it could be necessary a better management than the one used on both equipments.
Resumo:
PURPOSE: To verify perceptions and conduct of students with visual impairment regarding devices and equipment utilized in schooling process. METHODS: A transversal descriptive study on a population of 12-year-old or older students in schooling process, affected by congenital or acquired visual impairment, inserted in the government teaching system of Campinas during the year 2000. An interview quiz, created based on an exploratory study was applied. RESULTS: A group of 26 students, 46% of them with low vision and 53.8% affected by blindness was obtained. Most of the students were from fundamental teaching courses (65.4%), studying in schools with classrooms provided with devices (73.1%). Among the resources used in reading and writing activities, 94.1% of the students reported they used the Braille system and 81.8% reported that the reading subject was dictated by a colleague. Most of the students with low vision wore glasses (91.7%), and 33.3% utilized a magnifying glass as optical devices. Among the non-optical devices, the most common were the environmental ones, getting closer to the blackboard (75.0%) and to the window (66.7%) for better lighting. CONCLUSIONS: It became evident that students with low vision eye-sight made use of devices meant for bearers of blindness, such as applying the Braille system. A reduced number of low vision students making use of optical and non-optical devices applicable to their problems were observed, indicating a probable unawareness of their visual potential and the appropriate devices to improve efficiency.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física