1000 resultados para polibutilene succinato,copolimerizzazione,biopolimeri,ingegneria tissutale,neopentil glicole


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonostante il forte calo della mortalità per malattie cardiovascolari, tali disfunzioni rappresentano ancora la prima causa di morte in Europa. L’unico vero trattamento è il trapianto di cuore che però presenta diverse complicanze, tra cui la scarsa disponibilità di organi e il rigetto da parte dell’organismo curato. Per superare questi problemi, la ricerca si sta focalizzando sullo studio di nuovi polimeri biocompatibili e biodegradabili, per la realizzazione di strutture porose tridimensionali in grado di supportare la crescita e l’adesione cellulare. Tra i polimeri sintetici sperimentati per questa applicazione, il poli(butilene succinato) (PBS) rappresenta un ottimo candidato. Nonostante i promettenti risultati già ottenuti dal punto di vista di biodegradabilità e biocompatibilità, il PBS presenta però proprietà meccaniche poco adatte all’impiego qui descritto, proprio perché l’applicazione miocardica richiede particolari caratteristiche di modulo di Young (E) e un ritorno elastico comparabile con quello del miocardio naturale. Nella presente Tesi è stato sintetizzato e caratterizzato un nuovo copolimero statistico a base di PBS che presenta proprietà meccaniche funzionali all’MTE (Miocardial Tissue Engineering). In particolare, è stato inserito all’interno della catena polimerica, il neopentil glicole, che ha portato a un aumento della stabilità termica, proprietà di particolare interesse in fase di lavorazione del materiale, e una diminuzione del grado di cristallinità. La ridotta capacità a cristallizzare del copoliestere ha un effetto diretto sulle proprietà funzionali, tra le altre, sulla risposta meccanica e sulla velocità di degradazione idrolitica in ambiente fisiologico. In particolare, i risultati ottenuti hanno evidenziato come la copolimerizzazione abbia determinato una maggiore plasticità del materiale finale insieme a una maggiore velocità di degradazione idrolitica, entrambi spiegabili sulla base del ridotto grado di cristallinità.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’enorme progresso nel campo della biologia cellulare ha consentito lo sviluppo di tecnologie per la ricostruzione in vitro di tessuti, definendo una nuova branca di scienze biomediche: l’ingegneria dei tessuti. Tra le sue numerose applicazioni, la riparazione del tessuto cardiaco infartuato rappresenta un’importante obiettivo. Tra i polimeri sintetici sperimentati per questa applicazione, il poli(butilene succinato) (PBS) rappresenta un ottimo candidato. Nonostante i promettenti risultati già ottenuti dal punto di vista di biodegradabilità e biocompatibilità, il PBS presenta proprietà meccaniche poco adatte a questo impiego: l’applicazione miocardica richiede particolari caratteristiche di modulo di Young (E) e un ritorno elastico comparabile a quello del miocardio. Al fine di conferire al PBS proprietà meccaniche funzionali all’MTE (Miocardial Tissue Engineering), in questa Tesi è stato sintetizzato e caratterizzato un nuovo copolimero statistico a base di PBS contenente subunità Pripol 1009, un diacido prodotto dalla Croda, biobased e biodegradabile. Sono stati preparati film attraverso pressofusione e scaffold tramite elettrofilatura. Oltre alla caratterizzazione molecolare, volta a determinare il peso molecolare, la struttura e la composizione, film e scaffold sono stati sottoposti anche ad analisi termica, diffrattometrica, meccanica e a studi di degradazione idrolitica in condizioni fisiologiche. I risultati ottenuti hanno evidenziato che l’inserimento di segmenti Pripol all’interno della catena polimerica ha portato, oltre che a un incremento della stabilità termo-ossidativa, anche a un importante miglioramento delle proprietà meccaniche: il materiale sintetizzato, sia sotto forma di film che di scaffold, possiede le caratteristiche di elastomero termoplastico che lo rendono adatto ad applicazioni nell’ingegneria tissutale. Da ultimo, rispetto al PBS, il copolimero statistico mostra una maggiore velocità di degradazione in condizioni fisiologiche.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’ingegneria dei tessuti molli, quali il miocardio, sta sempre più emergendo come approccio alternativo alle terapie tradizionali. In questo ambito, i poliesteri costituiscono una classe di polimeri promettente, poiché le variegate strutture chimiche che li caratterizzano permettono di soddisfare un’ampia gamma di esigenze. Negli ultimi anni, l’attenzione della ricerca si è incentrata sul poli(butilene succinato)(PBS). Il PBS, tuttavia, possiede proprietà meccaniche non ottimali per l’ingegneria dei tessuti molli; inoltre i tempi di degradazione sono lunghi; ciò è dovuto al grado di cristallinità e all’idrofobicità, entrambi elevati. Nell’ottica di migliorare le proprietà non soddisfacenti di tale omopolimero, sono stati sintetizzati e caratterizzati nuovi copoliesteri alifatici a base di PBS biocompatibili e biodegradabili. In particolare, sono stati realizzati un copolimero a blocchi e uno statistico a base di Pripol 1009, un diacido commerciale (Croda), e un copolimero a blocchi a base di neopentil glicole, valutando sia l’effetto del tipo di comonomero introdotto nel PBS (Pripol 1009 vs. neopentil glicole) che quello dell’architettura molecolare (copolimero statistico vs. copolimero multiblocco). I materiali sintetizzati sono stati processati in forma di film attraverso pressofusione e di scaffold tramite elettrofilatura. Oltre alla caratterizzazione molecolare, film e scaffold sono stati sottoposti anche ad analisi termica, diffrattometrica, meccanica e a studi di degradazione idrolitica in condizioni fisiologiche. I risultati ottenuti hanno evidenziato la possibilità di modulare sia le proprietà meccaniche che la velocità di degradazione in condizioni fisiologiche. Tutti i copolimeri, infatti, presentano caratteristiche di elastomeri termoplastici e dei profili di degradazione variabili rispetto all’omopolimero, che li rendono adatti per applicazioni nel campo dell’ingegneria dei tessuti molli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'ingegneria tissutale è una branca delle scienze biomediche che negli ultimi anni si sta sviluppando come mezzo risolutivo per numerose problematiche mediche. Un'applicazione di particolare importanza è il trattamento di patologie cardiovascolari, le quali sono una delle principali cause di morte nel mondo. La mancanza di tessuto autologo e i problemi legati alle terapie cardiache, hanno incentivato numerosi studi basati sulla ricerca di biomateriali adeguati alla realizzazione di tessuti sintetici sostitutivi. In questo ambito, il polibutilene succinato (PBS) riveste sicuramente un ruolo importante. La sua biocompatibilità insieme alla biodegradabilità, non sono però sufficienti a renderlo idoneo ad applicazioni miocardiche, a causa dell’elevata rigidità. Allo scopo di migliorare le proprietà meccaniche del PBS nell’ottica di un’applicazione nel campo della rigenerazione del tessuto cardiaco, ma senza andare a detrimento delle proprietà già buone, il presente lavoro di Tesi propone un nuovo copolimero a base di PBS. Tale materiale è stato ottenuto tramite reazione di estensione di catena di un blocco hard (PBS) e un blocco soft (costituito da un copolimero statistico P(BSNS)). Il materiale ottenuto è stato analizzato sia sottoforma di film che di scaffold. Dopo una prima caratterizzazione molecolare (1H-NMR e GPC), il copolimero multiblocco è stato sottoposto anche ad analisi termica (DSC e TGA), diffrattometrica (WAXS) e meccanica. Si è evidenziato un miglioramento della stabilità termica e soprattutto una diminuzione del modulo elastico unitamente all’aumento dell’allungamento a rottura, in particolare nello scaffold. E’ stata inoltre valutata la velocità di degradazione idrolitica, evidenziandone una riduzione rispetto all’omopolimero. I risultati ottenuti confermano il miglioramento delle proprietà non soddisfacenti del PBS, indicando il copolimero multiblocco, oggetto della presenti Tesi, come materiale più idoneo alle applicazioni sopracitate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grazie agli sviluppi delle nanotecnologie biomedicali nell’ambito del rilascio controllato di farmaci e dell’ingegneria tissutale, sta diventando sempre più concreta la possibilità di superare i principali limiti della medicina tradizionale, basata nel primo caso su somministrazioni ripetute e a livello sistemico di principio attivo, e nel secondo caso sul trapianto (con relativi problemi di rigetto e carenza di donatori) e su trattamenti farmacologici non risolutivi. Tramite lo studio dei biomateriali e delle loro proprietà è invece possibile realizzare soluzioni ad hoc per l’ingegneria tissutale e per il rilascio controllato e mirato di farmaco. Nel presente studio, sono stati realizzati, mediante elettrofilatura, scaffolds a partire da blend fisiche di poli(butilene succinato) (PBS) e cheratina, a diversa composizione. Il primo è un polimero sintetico biocompatibile e approvato dalla Food and Drug Administration, con buone resistenza meccanica e lavorabilità, ma tempi di degradazione piuttosto lenti, a differenza della cheratina, polimero naturale, che risulta troppo rigido e difficile da processare, ma con buoni tempi di degradazione ed un’ottima biocompatibilità. Le blend sono state sottoposte a studi di miscibilità, mentre sui tappetini elettrofilati è stata effettuata una caratterizzazione morfologica, termica e meccanica. Inoltre, in vista di possibili applicazioni nell’ambito dell’ingegneria tissutale e del rilascio controllato di farmaco, si sono svolti anche test di biodegradazione in ambiente enzimatico e prove di biocompatibilità in vitro, nel primo caso, e studi di rilascio di diclofenac, comune antinfiammatorio, e test di adesione alla pelle, nel secondo caso. In conclusione, ogni tipo di indagine, seppur preliminare, ha comprovato che l’unione tra il PBS e la cheratina ha dato vita a nuove miscele facilmente processabili per potenziali utilizzi in due ambiti biomedicali di particolare interesse applicativo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reconstruction of bone is needed for high bone loss due to congenital deformities, trauma or neoplastic diseases. Commonly, orthopaedic surgical treatments are autologus or allogenic bone implant or prosthetic implant. A choice to the traditional approaches could be represented by tissue engineering that use cells (and/or their products) and innovative biomaterials to perform bone substitutes biologically active as an alternative to artificial devices. In the last years, there was a wide improvement in biology on stem cells potential research and in biomedical engineering through development of new biomaterials designed to resemble the physiological tissues. Tissue engineering strategies and smart materials aim together to stimulate in vivo bone regeneration. This approaches drive at restore not only structure integrity and/or function of the original tissue, but also to induce new tissue deposition in situ. An intelligent bone substitute is now designed like not only a scaffold but also as carrier of regeneration biomolecular signals. Biomimetics has helped to project new tissue engineered devices to simulate the physiological substrates architecture, such extracellular matrix (ECM), and molecular signals that drive the integration at the interface between pre-existing tissue and scaffold. Biomimetic strategies want to increase the material surface biological activity with physical modifications (topography) o chemical ones (adhesive peptides), to improve cell adhesion to material surface and possibly scaffold colonization. This study evaluated the effects of biomimetic modifications of surgical materials surface, as poly-caprolattone (PCL) and titanium on bone stem cells behaviour in a marrow experimental model in vitro. Two biomimetic strategies were analyzed; ione beam irradiation, that changes the surface roughness at the nanoscale, and surface functionalization with specific adhesive peptides or Self Assembled Monolayers (SAMs). These new concept could be a mean to improve the early (cell adhesion, spreading..) and late phases (osteoblast differentiation) of cell/substrate interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo scheletro è un tessuto dinamico, capace di adattarsi alle richieste funzionali grazie a fenomeni di rimodellamento ed alla peculiare proprietà rigenerativa. Tali processi avvengono attraverso l’azione coordinata di osteoclasti ed osteoblasti. Queste popolazioni cellulari cooperano allo scopo di mantenere l’ equilibrio indispensabile per garantire l’omeostasi dello scheletro. La perdita di tale equilibrio può portare ad una diminuzione della massa ossea e, ad una maggiore suscettibilità alle fratture, come avviene nel caso dell’osteoporosi. E’ noto che, nella fisiopatologia dell’osso, un ruolo cruciale è svolto da fattori endocrini e paracrini. Dati recenti suggeriscono che il rimodellamento osseo potrebbe essere influenzato dal sistema nervoso. L’ipotesi è supportata dalla presenza, nelle vicinanze dell’osso, di fibre nervose sensoriali responsabili del rilascio di alcuni neuro peptidi, tra i quali ricordiamo la sostanza P. Inoltre in modelli animali è stato dimostrato il diretto coinvolgimento del sistema nervoso nel mantenimento dell’omeostasi ossea, infatti ratti sottoposti a denervazione hanno mostrato una perdita dell’equilibrio esistente tra osteoblasti ed osteoclasti. Per tali ragioni negli ultimi anni si è andata intensificando la ricerca in questo campo cercando di comprendere il ruolo dei neuropeptidi nel processo di differenziamento dei precursori mesenchimali in senso osteogenico. Le cellule stromali mesenchimali adulte sono indifferenziate multipotenti che risiedono in maniera predominante nel midollo osseo, ma che possono anche essere isolate da tessuto adiposo, cordone ombelicale e polpa dentale. In questi distretti le MSC sono in uno stato non proliferativo fino a quando non sono richieste per processi locali di riparo e rigenerazione tessutale. MSC, opportunamente stimolate, possono differenziare in diversi tipi di tessuto connettivo quali, tessuto osseo, cartilagineo ed adiposo. L’attività di ricerca è stata finalizzata all’ottimizzazione di un protocollo di espansione ex vivo ed alla valutazione dell’influenza della sostanza P, neuropeptide presente a livello delle terminazioni sensoriali nelle vicinanze dell’osso, nel processo di commissionamento osteogenico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’argomento trattato in questo elaborato riguarda la natura e le applicazioni di una nuova classe di biomateriali: i peptidi auto-assemblanti. La perdita di funzione di un organo o di un tessuto rappresenta una problematica rilevante sia sotto il profilo clinico sia per i costi di gestione. I trapianti sono infatti tra le terapie più sofisticate e onerose economicamente, complicate da altri aspetti quali una strutturale insufficienza di donatori e la necessità che i soggetti trapiantati vengano sottoposti cronicamente a regimi terapeutici immunosoppressivi che aumentano eventuali effetti collaterali. La terapia sostitutiva basata su organi artificiali è invece gravata dalla durata limitata dei dispositivi, nonchè da un non trascurabile rischio infettivo. La medicina rigenerativa, che sembra essere una soluzione adeguata per ovviare a tutte queste problematiche, è un settore emergente che combina aspetti della medicina, della biologia cellulare e molecolare, della scienza dei materiali e dell’ingegneria al fine di rigenerare, riparare o sostituire i tessuti danneggiati. In questo panorama, il ruolo dei biomateriali sta diventando sempre più importante grazie alla loro varietà e alle loro funzioni emergenti. Tra i biomateriali innovativi più promettenti troviamo i peptidi auto-assemblanti. Dopo un'introduzione sui principi dell'ingegneria tissutale, la tesi si focalizza sui peptidi auto-assemblanti e sulle loro applicazioni in campo biomedico, ponendo l'attenzione, in particolar modo, sulla realizzazione di scaffold per la rigenerazione del tessuto osseo, cardiaco, cartilagineo e nervoso, e sulla loro applicazione per il rilascio controllato di farmaci.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il presente elaborato riassume un’analisi della letteratura scientifica corrente relativa all’approccio proposto dall’ingegneria tissutale per la sostituzione/rigenerazione del tessuto tendineo e legamentoso e analizza le fasi che conducono alla realizzazione di un costrutto con a bordo cellule specifiche. I tendini e i legamenti sono tessuti fibrosi specializzati che svolgono principalmente una funzione meccanica: i primi permettono la trasmissione delle forze dal muscolo all’osso per generare il movimento, i secondi invece garantiscono la stabilità tra le giunture ossee che collegano. Gravi lesioni di tali strutture sono associate all’insorgere di incombenti problematiche a livello motorio e la caratteristica peculiare di mancata rigenerazione spontanea ha indotto alla ricerca di fonti alternative per la loro ricostruzione. L’esperienza relativa alla preparazione e all’uso di innesti allogenici e xenogenici finalizzati alla rigenerazione tissutale mostrano una difficoltà nella coltura cellulare in vitro, una prolungata risposta infiammatoria in vivo, nonché dei tempi troppo lunghi per l’impianto. L’utilizzo di scaffold, ovvero supporti 3D realizzati con materiale sintetico (p.es. acido poliglicolico) o naturale (p.es. collagene) per ospitare la crescita di cellule adeguate, sembra un approccio alternativo promettente. In particolare, in questo documento sono state riassunte due esperienze di riparazione tissutale, ispirate alla strategia sopra indicata, per il recupero del tendine d’Achille e del legamento crociato anteriore (ACL) del ginocchio, due distretti affetti da lesioni di natura principalmente traumatica e caratterizzati da specifiche proprietà che devono essere soddisfatte in vitro e in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ogni giorno nel mondo vengono eseguite migliaia di procedure chirurgiche per sostituire o riparare tessuti che sono stati danneggiati da malattie o traumi. L'ingegneria tissutale rappresenta una strategia alternativa che mira a rigenerare i tessuti danneggiati combinando cellule e biomateriali altamente porosi che fungano da impalcature (scaffolds). In questa tesi compilativa si presenta un approccio recentemente proposto per la rigenerazione del tessuto osseo. Saranno inizialmente descritte caratteristiche e proprietà dell'osso a livello macro e microscopico e il processo riparativo fisiologico. Si illustreranno quindi i principi dell'ingegneria tissutale, evidenziando i biomateriali utilizzabili, le cellule indicate per la rigenerazione e i rapporti funzionali tra di esse e lo scaffold che deve sostenerne la crescita. Successivamente si descriverà il concetto di ‘biomimetica’ dello scaffold e i metodi impiegati per migliorarne la funzionalità, imitando sia l'aspetto meccanico sia quello biologico della reale matrice ossea; verrà trattato infine un caso di scaffold biomimetico realizzato con nanocompositi, che appare un promettente sostitutivo dell'osso.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nella presente Tesi si procede alla preparazione e caratterizzazione di nuovi poliesteri alifatici a base di PLLA che offrano garanzie di completa biodegradabilità e presentino caratteristiche chimico/fisiche adeguate ad applicazioni nell’ambito dell’imballaggio alimentare. La modifica chimica del PLLA è stata realizzata per introduzione in catena di segmenti opportunamente sintetizzati che fungono da iniziatori nell’apertura dell’anello di lattide nella ROP. I copolimeri triblocco, poli(lattico)-block-poli(propilene/neopentil glicole succinato) PLLAnP(PS80NS20)m, si differenziano per il diverso rapporto in peso tra i due diversi tipi di blocco, quello hard di PLLA e quello soft di P(PS80NS20). I risultati ottenuti sono di rilevante interesse applicativo: i copolimeri presentano migliorate proprietà meccaniche rispetto al PLLA, una maggiore velocità di biodegradazione, senza che abbia avuto luogo un peggioramento della stabilità termica e delle proprietà barriera, addirittura migliore al gas test O2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo scopo di questa trattazione è quello di fornire una panoramica sui metodi di ingegnerizzazione dell’utero ad oggi sperimentati. L’obiettivo degli studi qui analizzati è quello di creare in vitro uno scaffold per l’utero umano con adeguate caratteristiche strutturali e determinati componenti al fine di permettere ai tessuti vicini di rigenerarsi e per poterne studiare le proprietà in vivo. Gli scaffold analizzati sono a base di collagene, fatti di materiali sintetici o costituiti dalle dECM. Per effettuare la decellularizzazione delle ECM sono stati impiegati detergenti come SDS e Triton X-100 o alta pressione idrostatica. Le impalcature realizzate sono state poi valutate per quanto riguarda le proprietà istologiche, IHC, strutturali e meccaniche e tramite angiografia è stata esaminata la conservazione delle reti vascolari negli scaffold dECM. I risultati hanno confermato l'efficacia del protocollo di decellularizzazione tramite HHP o l’utilizzo combinato di SDS e Triton X-100 per fornire scaffold dell’utero con caratteristiche e componenti della ECM simili all'utero nativo. Per quanto riguarda i materiali sintetici, i polimeri sono risultati particolarmente idonei date le loro caratteristiche, quali elevata porosità e proprietà biomeccaniche regolabili; per i materiali naturali invece, il collagene è stato quello più utilizzato e che ha portato ad ottimi risultati, anche in quanto componente principale dell’ECM. Gli studi in vivo hanno poi dimostrato la biocompatibilità e il potenziale rigenerativo degli scaffold e hanno suggerito un percorso di segnalazione come meccanismo di base per il processo rigenerativo. Tra i vari studi è stato analizzato anche il primo protocollo di decellularizzazione efficiente basato sulla perfusione per ottenere scaffold dell’intero utero umano. I risultati raccolti potrebbero essere impiegati in futuri studi di ingegneria del tessuto uterino umano che potrebbero portare allo sviluppo di nuovi trattamenti per pazienti sterili.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le lesioni del sistema nervoso periferico, causate da eventi traumatici o da patologie degenerative, costituiscono un danno che può portare alla perdita di specifiche funzionalità motorie o sensoriali. In questi casi, la terapia chirurgica è necessaria per riparare la perdita di continuità assonale. Il gold standard operatorio attuale è costituito dal trapianto nella sede lesionata di un nervo da donatore o dallo stesso soggetto affetto dal danno. Recentemente, un approccio basato su tecniche di ingegneria dei tessuti propone l’impianto di biomateriali modellati come condotti che favoriscano la rigenerazione assonale. Ne è un esempio chiaro un recente lavoro di ricerca, nel quale Cheng et al. propongono una strategia basata sull’impiego di scaffold piezoelettrici prodotti attraverso una tecnica di "casting annealing displacement " che utilizza Polivinilidenfluoruro (PVDF) e Policaprolattone (PCL). Confrontando in vitro scaffold in PCL, in PVDF e PCL/PVDF, in particolare analizzandone le proprietà piezoelettriche e quelle meccaniche, si rilevano i vantaggi della copolimerizzazione. Questi risultati di interesse vengono inoltre confermati dai risultati funzionali ottenuti con l’impianto in vivo in topi con una lesione di 15 mm al nervo sciatico.