994 resultados para photovoltaic effect
Resumo:
The response of photonic memory effect in I-V characteristics of a specially designed photonic memory cell was reported. When the cell is biased in a storage mode, the optical excitation with the photon's energy larger than the energy gap gives rise to a step-like jump in the current. A set-up was used to measure the transient photocurrent at the biases where the step-like jump showed up. It is proved that the falling transient edge of the photocurrent, as the photoexcitation turns off, mainly maps the decaying of electrons and holes, which were previously stored in the cell during the illumination. Its time constant is a measure of photonic memory time.
Resumo:
We have studied the photovoltaic effect in cubic GaN on GaAs at room temperature. The photovoltaic spectra of cubic GaN epitaxial film were concealed by the photovoltaic effect from the GaAs substrate unless additional illumination of a 632.8 nm He-Ne laser beam was used to remove the interference of the GaAs absorption in the measurement. On the basis of the near-band-edge photovoltaic spectra of cubic GaN, we obtained the minority carrier diffusion lengths of about 0.32 and 0.14 mu m for two undoped n-type cubic GaN samples with background concentrations of 10(14) and 10(18) cm(-3), respectively. (C) 1999 American Institute of Physics. [S0003-6951(99)00450-7].
Resumo:
Tin disulfide (SnS2) nanocrystalline/amorphous blended phases were synthesized by mild chemical reaction. Both X-ray diffraction and transmission electron microscopy measurements demonstrate that the as-synthesized particles presented very small size, with a diameter of only a few nanometers. The photoluminescence (PL) spectrum suggests efficient splitting of photo-generated excitons in poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and SnS2 hybrid films. Organic/inorganic hybrid solar cells comprising MDMO-PPV and SnS2 were prepared, giving photovoltage, photocurrent, fill factor and efficiency values of 0.702 V, 0.549 mA/cm(2), 0.385 and 0.148%, respectively, which suggests that this phase-blended inorganic semiconductor can also serve as a promising solar energy material. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We have studied the photovoltaic effects in Si doping superlattices (nipi) under different excitation conditions with and without additional cw optical biasing using a He-Ne laser. On the basis of the photovoltaic theory of carrier spatial separation in superlattices, we propose the concept of spatial fixity of the photovoltage polarity in type-II superlattices and examine the experimental results. The photovoltaic effect in Si nipi is found mainly from the direct transitions related with shallow impurities in real space, not the electron-hole band-to-band process as in GaAs nipi.
Resumo:
We report electroluminescence in hybrid ZnO and conjugated polymer poly[2-methoxy-5-(3', 7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) bulk heterojuriction photovoltaic cells. Photolummescence quenching experimental results indicate that the ultra,fast photoinduced electron transfer occurs from MDMO-PPV to ZnO under illumination. The ultrafast photoinduced electron transfer effect is induced because ZnO has an electron affinity about 1.2 eV greater than that of MDMO-PPV. Electron 'back transfer' can occur if the interfacial barrier between ZnO and MDMO-PPV can be overcome by applying a substantial electric field. Therefore, electroluminescence action due to the fact that the back transfer effect can be observed in the ZnO:MDMO-PPV devices since a forward bias is applied. The photovoltaic and electroluminescence actions in the same ZnO:MDMO-PPV device can be induced by different injection ways: photoinjection and electrical injection. The devices are expected to provide an opportunity for dual functionality devices with photovoltaic effect and electroluminescence character.
Resumo:
A photovoltaic quantum dot infrared photodetector with InAs/GaAs/AlGaAs structures is reported. The detector is sensitive to normal incident light. At zero bias and 78 K, a clear spectral response in the range of 2 -7 mu m has been obtained with peaks at 3.1, 4.8 and 5.7 mu m. The bandgap energies of GaAs and Al0.2Ga0.8As at 78K are calculated and the energy diagram of the transitions in the Quantum-Dot Infrared Photodetector (QDIP) is given out. The photocurrent signals can be detected up to 110 K, which is state-of-the-art for photovoltaic QDIP. The photovoltaic effect in our detector is a result of the enhanced band asymmetry as we design in the structure.
Resumo:
We present a comprehensive study of the one-dimensional modulation instability of broad optical beams in biased photo refractive-photovoltaic crystals under steady-state conditions. We obtain the one-dimensional modulation instability growth rate by globally treating the space-charge field and by considering distinction between values of Eo in nonlocal effects and local effects in the space-charge field, where Eo is the field constant correlated with terms in the space-charge field, which depends on the external bias field, the bulk photovoltaic effect, and the ratio of the optical beam's intensity to that of the dark irradiance. The one-dimensional modulation instability growth rate in local effects can be determined from that in nonlocal effects. When the bulk photovoltaic effect is neglectable, irrespective of distinction between values of Eo in nonlocal effects and local effects in the space-charge field, the one-dimensional modulation instability growth rates in nonlocal effects and local effects are those of broad optical beams studied previously in biased photorefractive-nonphotovoltaic crystals. When the external bias field is absent, the one-dimensional modulation instability growth rates in nonlocal effects and local effects predict those of broad optical beams in open- and closed-circuit photorefractive-photovoltaic crystals. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We show that bright-dark vector solitons are possible in biased photorefractive-photovoltaic crystals under steady-state conditions, which result from both the bulk photovoltaic effect and the spatially nonuniform screening of the external bias field. The analytical solutions of these vector solitons can be obtained in the case of \sigma\ much less than 1, where sigma is the parameter controlling the intensities of the two optical beams. In the limit of -1 < sigma much less than 1, these vector solitons can also be determined by use of simple numerical integration procedures. When the bulk photovoltaic effect is neglectable, these vector solitons are bright-dark vector screening solitons studied previously in the \sigma\ much less than 1 regime, and predict bright-dark vector screening solitons in the -1 < sigma less than or equal to 1 regime. When the external bias field is absent, these vector solitons predict bright-dark vector photovoltaic solitons in closed and open circuits. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We report a successful experimental observation of two-dimensional photovoltaic dark solitons in an anisotropic crystal with partially spatially incoherent light beams. This kind of solitons results from the bulk photovoltaic effect, which depends on the direction of propagation of the optical beam and on the orientation of the intensity gradient, with respect to the principal axes of the crystal.
Resumo:
We investigate the modulation instability of quasi-plane-wave optical beams in biased photorefractive-photovoltaic crystals by globally treating the space-charge field. The modulation instability growth rate is obtained, which depends on the external bias field, on the bulk photovoltaic effect, and on the ratio of the optical beam's intensity to that of the dark irradiance. Our analysis indicates that this modulation instability growth rate is identical to the modulation instability growth rate studied previously in biased photorefractive-nonphotovoltaic crystals when the bulk photovoltaic effect is negligible for shorted circuits, and predicts the modulation instability growth rate in open- and closed-circuit photorefractive-photovoltaic crystals when the external bias field is absent.
Resumo:
This paper shows that waveguides induced by grey screening-photovoltaic solitons are always single mode for all intensity ratios, which are the ratio between the peak intensity of the soliton and the dark irradiance. It finds that the confined energy near the centre of the grey soliton and the propagation constant of the guided mode increase monotonically with increasing intensity ratio. On the other hand, when the soliton greyness increases, the confined energy near the centre of the grey soliton and the propagation constant of the guided mode reduce monotonically. When the bulk photovoltaic effect is neglected for short circuits, these waveguides become waveguides induced by grey screening solitons. When the external bias field is absent, these waveguides become waveguides induced by grey photovoltaic solitons.
Resumo:
We investigate theoretically waveguides induced by screening-photovoltaic solitons in biased photorefractive-photovoltaic crystals. We show that the number of guided modes in a waveguide induced by a bright screening-photovoltaic soliton increases monotonically with the increasing intensity ratio of the soliton, which is the ratio between the peak intensity of the soliton and the dark irradiance. On the other hand, waveguides induced by dark screening-photovoltaic solitons are always single mode for all intensity ratios and the confined energy near the centre of a dark screening-photovoltaic soliton increases monotonically with the increasing intensity ratio. When the bulk photovoltaic effect is neglectable, these waveguides are those induced by screening solitons. When the external field is absent, these waveguides predict those induced by photovoltaic solitons.
Resumo:
The crop diseases sometimes are related to the irradiance that the crop receives. When an experiment requires the measurement of the irradiance, usually it results in an expensive data acquisition system. If it is necessary to check many test points, the use of traditional sensors will increase the cost of the experiment. By using low cost sensors based in the photovoltaic effect, it is possible to perform a precise test of irradiance with a reduced price. This work presents an experiment performed in Ademuz (Valencia, Spain) during September of 2011 to check the validity of low cost sensors based on solar cells.
Resumo:
This paper describes the dielectrophoretic potential created by the evanescent electric field acting on a particle near a photovoltaic crystal surface depending on the crystal cut. This electric field is obtained from the steady state solution of the Kukhtarev equations for the photovoltaic effect, where the diffusion term has been disregarded. First, the space charge field generated by a small, square, light spot where d _ l (being d a side of the square and l the crystal thickness) is studied. The surface charge density generated in both geometries is calculated and compared as their relation determines the different properties of the dielectrophoretic potential for both cuts. The shape of the dielectrophoretic potential is obtained and compared for several distances to the sample. Afterwards other light patterns are studied by the superposition of square spots, and the resulting trapping profiles are analysed. Finally the surface charge densities and trapping profiles for different d/l relations are studied.
Resumo:
Methylammonium bismuth (III) iodide single crystals and films have been developed and investigated. We have further presented the first demonstration of using this organic–inorganic bismuth-based material to replace lead/tin-based perovskite materials in solution-processable solar cells. The organic–inorganic bismuth-based material has advantages of non-toxicity, ambient stability, and low-temperature solution-processability, which provides a promising solution to address the toxicity and stability challenges in organolead- and organotin-based perovskite solar cells. We also demonstrated that trivalent metal cation-based organic–inorganic hybrid materials can exhibit photovoltaic effect, which may inspire more research work on developing and applying organic-inorganic hybrid materials beyond divalent metal cations (Pb (II) and Sn (II)) for solar energy applications.