829 resultados para pet food products
Resumo:
This paper seeks to address the widespread call in the literature for the cross-cultural examination ( and validation) of accepted concepts within consumer behaviour, such as consumer risk perceptions and information search. The findings of the study provide support for a number of accepted relationships, whilst identifying distinct cross cultural differences in external information search and willingness to buy genetically modified (GM) food products by consumers.
Resumo:
The call for the cross cultural examination and validation of commonly accepted relationships within consumer behaviour is strengthening. Consequently, this paper seeks to address this call by examining consumer risk perceptions, reliance on country of origin information and willingness to buy Genetically Modified (GM) food products on Australian and South Korean consumers. Findings indicate a number of cross cultural similarities and differences that have both theoretical and practical implications.
Resumo:
Genetically modified (GM) food products are the source of much controversy and in the context of consumer behaviour, the way in which consumers perceive such food products is of paramount importance both theoretically and practically. Despite this, relatively little research has focused on GM food products from a consumer perspective, and as such, this study seeks to better understand what effects consumer willingness to buy GM food products in Australian consumers.
Resumo:
Bovine intestine was dried in a heat pump fluid bed combination. Minimum fluidisation velocity was calculated by Ergun Equation and some relations were established.
Resumo:
Drying is very energy intensive process and consumes about 20-25% of the energy used by food processing industry. The energy efficiency of the process and quality of dried product are two key factors in food drying. Global energy crisis and demand for quality dried food further challenge researchers to explore innovative techniques in food drying to address these issues. Intermittent drying is considered one of the promising solutions for improving energy efficiency and product quality without increasing the capital cost of the drier. Intermittent drying has already received much attention. However, a comprehensive review of recent progresses and overall assessment of energy efficiency and product quality in intermittent drying is lacking. The objective of this article is to discuss, analyze and evaluate the recent advances in intermittent drying research with energy efficiency and product quality as standpoint. Current available modelling techniques for intermittent drying are reviewed and their merits and demerits are analyzed. Moreover, intermittent application of ultrasound, infrared (IR) and microwave in combined drying technology have been reviewed and discussed. In this review article the gaps in the current literature are highlighted, some important future scopes for theoretical and experimental studies are identified and the direction of further research is suggested.
Resumo:
In this research fluidization behavior of cubical Bovine intestine samples was studied. Bovine intestine samples were heat pump dried at atmospheric pressure and at emperatures below and above the material freezing points. Experiments were conducted to study fluidization characteristics and drying kinetics at different drying conditions. Bovine particles were characterized according to Geldart classification and minimum fluidization velocity was calculated using Ergun Equation and generalized equation for all drying conditions at the beginning of the trials and end of the trials. Walli’s model was used to categorize stability of the fluidization at the beginning and end of the drying for each trial. Walli’s values determined were positive at the beginning and end of all trials indicating stable fluidisation at the beginning and end for each drying condition.
Resumo:
Bovine intestine samples were heat pump fluidized bed dried at atmospheric pressure and at temperatures below and above the material freezing points equipped with a continuous monitoring system. The investigation of the drying characteristics has been conducted in the temperature range -10~25oC and the airflow in the range 1.5~2.5 m/s. Some experiments were conducted as a single temperature drying experiments and others as two stage drying experiments employing two temperatures. An Arrhenius-type equation was used to interpret the influence of the drying air parameters on the effective diffusivity, calculated with the method of slopes in terms of energy activation, and this was found to be sensitivity of the temperature. The effective diffusion coefficient of moisture transfer was determined by Fickian method using uni-dimensional moisture movement in both moisture, removal by evaporation and combined sublimation and evaporation. Correlations expressing the effective moisture diffusivity and drying temperature are reported.
Resumo:
In order to establish the influence of the drying air characteristics on the drying performance and fluidization quality of bovine intestine for pet food, several drying tests have been carried out in a laboratory scale heat pump assisted fluid bed dryer. Bovine intestine samples were heat pump fluidized bed dried at atmospheric pressure and at temperatures below and above the materials freezing points, equipped with a continuous monitoring system. The investigation of the drying characteristics have been conducted in the temperature range −10 to 25 ◦C and the airflow in the range 1.5–2.5 m/s. Some experiments were conducted as single temperature drying experiments and others as two stage drying experiments employing two temperatures. An Arrhenius-type equation was used to interpret the influence of the drying air temperature on the effective diffusivity, calculated with the method of slopes in terms of energy activation, and this was found to be sensitive to the temperature. The effective diffusion coefficient of moisture transfer was determined by the Fickian method using uni-dimensional moisture movement in both moisture, removal by evaporation and combined sublimation and evaporation. Correlations expressing the effective moisture diffusivity and drying temperature are reported. Bovine particles were characterized according to the Geldart classification and the minimum fluidization velocity was calculated using the Ergun Equation and generalized equation for all drying conditions at the beginning and end of the trials. Walli’s model was used to categorize stability of the fluidization at the beginning and end of the dryingv for each trial. The determined Walli’s values were positive at the beginning and end of all trials indicating stable fluidization at the beginning and end for each drying condition.
Resumo:
Background/Aims To examine the nutritional profile of baby and toddler foods sold in Australia. Methods Nutrient information for baby and toddler foods available at Australian supermarkets was collected between August and December 2013. Levels of declared energy, total fat, saturated fat, total sugar, sodium and estimated added sugar were examined, as well as the presence of additional micronutrients on the label. The Health Star Rating (HSR) system was used to determine nutritional quality. The range of products on offer was also examined by product type and by the age category for which the product was marketed. Results Of the 309 products included, 29 % were fortified. On a per 100 g basis, these 309 products provided a mean (±SD) of 476 ± 486 kJ, 1.6 ± 2.4 g total fat, 10.7 ± 12.2 g total sugar, 2.7 ± 7.4 g added sugar, and 33.5 ± 66.5 mg sodium. Fruit-based products or products with fruit listed as an ingredient (58 %) were the predominant product type. On the nutrition label, 42 % displayed at least one additional micronutrient while 37 % did not display saturated fat. The most common HSR was four stars (45 %) and 6? months was the most commonly identified targeted age group (36 %). Conclusions The majority of baby and toddler foods sold in Australian supermarkets are ready-made fruit-based products aimed at children under 12 months of age. Baby and toddler foods are overlooked in public policy discussions pertaining to population nutrient intake but their relatively high sugar content deriving from fruits requires close attention to ensure these foods do not replace other more nutrient dense foods, given children have an innate preference for sweet tastes.
Resumo:
Contemporary food systems promote the consumption of highly processed foods of limited nutrition, contributing to overweight and obesity, diet-related disease and significant financial burden on healthcare systems. In part, this has resulted from highly successful design, development and marketing strategies for processed foods. The successful application of such strategies to healthy food options, and the services and business plans that accompany them, could assist in enhancing health and alleviating burden on health care systems. Product designers have long been aware of the importance of intertwining emotional experiences with new products. However, a lack of theoretical precision exists for applying emotional design beyond food products, to the food systems, services and business models that drive them. This article explores emotional design within the context of food and food systems and proposes a new concept – Emotional Food Design (EFD), through which emotional design is integrated across levels of a food system. EFD complements the dominating deductive view of food systems research with an abductive iterative design approach contextualized within the creation of new food products, services and business models and their associated emotional attachments. This paper concludes by outlining what EFD can offer to reorient food systems to successfully promote healthy eating.
Resumo:
A general mathematical model for forced air precooling of spherical food products in bulk is developed. The food products are arranged inline to form a rectangular parallelepiped. Chilled air is blown along the height of the package. The governing equations for the transient two-dimensional conduction with internal heat generation in the product, simultaneous heat and mass transfer at the product-air interface and one-dimensional transient energy and species conservation equations for the moist air are solved numerically using finite difference methods. Results are presented in the form of time-temperature histories. Experiments are conducted with model foods in a laboratory scale air precooling tunnel. The agreement between the theoretical and experimental results is found to be good. In general, a single product analysis fails to predict the precooling characteristics of bulk loads of food products. In the range of values investigated, the respiration heat is found to have a negligible effect.
Resumo:
A mathematical model is developed to describe the hydraircooling process when the water and air are flowing in the same direction. The governing equations for the simultaneous heat and mass transfer are solved using finite-difference numerical methods. The half cooling time of the food products is correlated as a function of the dimensionless process parameters. It is observed that a process time of approximately double the half cooling time will result in the food products attaining almost a steady state. The process times of the bulk hydraircooling process and the bulk air precooling process are compared.
Resumo:
Hydraircooling is a technique used for precooling food products. In this technique chilled water is sprayed over the food products while cold unsaturated air is blown over them. Hydraircooling combines the advantages of both air- and hydrocooling. The present study is concerned with the analysis of bulk hydraircooling as it occurs in a package filled with several layers of spherical food products with chilled water sprayed from the top and cold unsaturated air blown from the bottom. A mathematical model is developed to describe the hydrodynamics and simultaneous heat and mass transfer occurring inside the package. The non-dimensional governing equations are solved using the finite difference numerical methods. The results are presented in the form of time-temperature charts. A correlation is obtained to calculate the process time in terms of the process parameters.