983 resultados para permanganimetric titration
Resumo:
The classical volumetric titration of Fe2+ with MnO4-, used in some routine analysis as well as in undergraduate courses was improved. SnCl2 (to reduce Fe3+ to Fe2+) and HgCl2 (to oxidize excess SnCl2) were substituted by metallic zinc in boiling solutions, thus avoiding the toxic HgCl2 and Hg2Cl2; nitrate ions do not interfere in the improved methodology (it is an interference in the classical one) and the reproducibility of the determinations is increased by using metallic zinc. Determinations by students of undergraduate courses are discussed.
Resumo:
The micellization of a homologous series of zwitterionic surfactants, a group of sulfobetaines, was studied using isothermal titration calorimetry (ITC) in the temperature range from 15 to 65 °C. The increase in both temperature and the alkyl chain length leads to more negative values of ΔGmic(0) , favoring the micellization. The entropic term (ΔSmic(0)) is predominant at lower temperatures, and above ca. 55-65 °C, the enthalpic term (ΔHmic(0)) becomes prevalent, figuring a jointly driven process as the temperature increases. The interaction of these sulfobetaines with different polymers was also studied by ITC. Among the polymers studied, only two induced the formation of micellar aggregates at lower surfactant concentration: poly(acrylic acid), PAA, probably due to the formation of hydrogen bonds between the carboxylic group of the polymer and the sulfonate group of the surfactant, and poly(sodium 4-styrenesulfonate), PSS, probably due to the incorporation of the hydrophobic styrene group into the micelles. The prevalence of the hydrophobic and not the electrostatic contributions to the interaction between sulfobetaine and PSS was confirmed by an increased interaction enthalpy in the presence of electrolytes (NaCl) and by the observation of a significant temperature dependence, the latter consistent with the proposed removal of hydrophobic groups from water.
Resumo:
Although H(+) and OH(-) are the most common ions in aqueous media, they are not usually observable in capillary electrophoresis (CE) experiments, because of the extensive use of buffer solutions as the background electrolyte. In the present work, we introduce CE equipment designed to allow the determination of such ions in a similar fashion as any other ion. Basically, it consists of a four-compartment piece of equipment for electrolysis-separated experiments (D. P. de Jesus et at, Anal. Chem., 2005, 77, 607). In such a system, the ends of the capillary are placed in two reservoirs, which are connected to two other reservoirs through electrolyte-filled tubes. The electrodes of the high-voltage power source are positioned in these reservoirs. Thus, the electrolysis products are kept away from the inputs of the capillary. The detection was provided by two capacitively coupled contactless conductivity detectors (CD), each one positioned about 11 cm from the end of the capillary. Two applications were demonstrated: titration-like procedures for nanolitre samples and mobility measurements. Strong and weak acids (pK(a) < 5), pure or mixtures, could be titrated. The analytical curve is linear from 50 mu M up to 10 mM of total dissociable hydrogen (r = 0.99899 for n =10) in 10-nL samples. By including D(2)O in the running electrolyte, we could demonstrate how to measure the mixed proton/deuteron mobility. When H(2)O/D(2)O (9 : 1 v/v) was used as the solvent, the mobility was 289.6 +/- 0.5 x 10(-5) cm(2) V(-1) s(-1). Due to the fast conversion of the species, this value is related to the overall behaviour of all isotopologues and isotopomers of the Zundel and Eigen structures, as well as the Stokesian mobility of proton and deuteron. The effect of neutral (o-phenanthroline) and negatively charged (chloroacetate) bases and aprotic solvent (DMSO) over the H(+) mobility was also demonstrated.
Resumo:
Lacchini S, Heimann AS, Evangelista FS, Cardoso L, Silva GJ, Krieger JE. Cuff-induced vascular intima thickening is influenced by titration of the Ace gene in mice. Physiol Genomics 37: 225-230, 2009. First published March 3, 2009; doi:10.1152/physiolgenomics.90288.2008.-We tested the hypothesis that small changes in angiotensin I-converting enzyme (ACE) expression can alter the vascular response to injury. Male mice containing one, two, three, and four copies of the Ace gene with no detectable vascular abnormality or changes in blood pressure were submitted to cuff-induced femoral artery injury. Femoral thickening was higher in 3- and 4-copy mice (42.4 +/- 4.3% and 45.7 +/- 6.5%, respectively) compared with 1- and 2-copy mice (8.3 +/- 1.3% and 8.5 +/- 0.9%, respectively). Femoral ACE levels from control and injured vessels were assessed in 1- and 3-copy Ace mice, which represent the extremes of the observed response. ACE vascular activity was higher in 3- vs. 1-copy Ace mice (2.4-fold, P < 0.05) in the control uninjured vessel. Upon injury, ACE activity significantly increased in both groups [2.41-fold and 2.14-fold (P < 0.05) for 1- and 3-copy groups, respectively] but reached higher levels in 3- vs. 1-copy Ace mice (P < 0.05). Pharmacological interventions were then used as a counterproof and to indirectly assess the role of angiotensin II (ANG II) on this response. Interestingly, ACE inhibition (enalapril) and ANG II AT(1) receptor blocker (losartan) reduced intima thickening in 3-copy mice to 1-copy mouse values (P < 0.05) while ANG II treatment significantly increased intima thickening in 1-copy mice to 3-copy mouse levels (P < 0.05). Together, these data indicate that small physiologically relevant changes in ACE, not associated with basal vascular abnormalities or blood pressure levels, do influence the magnitude of cuff-induced neointima thickening in mice.
Resumo:
The development of the new TOGA (titration and off-gas analysis) sensor for the detailed study of biological processes in wastewater treatment systems is outlined. The main innovation of the sensor is the amalgamation of titrimetric and off-gas measurement techniques. The resulting measured signals are: hydrogen ion production rate (HPR), oxygen transfer rate (OTR), nitrogen transfer rate (NTR), and carbon dioxide transfer rate (CTR). While OTR and NTR are applicable to aerobic and anoxic conditions, respectively, HPR and CTR are useful signals under all of the conditions found in biological wastewater treatment systems, namely, aerobic, anoxic and anaerobic. The sensor is therefore a powerful tool for studying the key biological processes under all these conditions. A major benefit from the integration of the titrimetric and off-gas analysis methods is that the acid/base buffering systems, in particular the bicarbonate system, are properly accounted for. Experimental data resulting from the TOGA sensor in aerobic, anoxic, and anaerobic conditions demonstrates the strength of the new sensor. In the aerobic environment, carbon oxidation (using acetate as an example carbon source) and nitrification are studied. Both the carbon and ammonia removal rates measured by the sensor compare very well with those obtained from off-line chemical analysis. Further, the aerobic acetate removal process is examined at a fundamental level using the metabolic pathway and stoichiometry established in the literature, whereby the rate of formation of storage products is identified. Under anoxic conditions, the denitrification process is monitored and, again, the measured rate of nitrogen gas transfer (NTR) matches well with the removal of the oxidised nitrogen compounds (measured chemically). In the anaerobic environment, the enhanced biological phosphorus process was investigated. In this case, the measured sensor signals (HPR and CTR) resulting from acetate uptake were used to determine the ratio of the rates of carbon dioxide production by competing groups of microorganisms, which consequently is a measure of the activity of these organisms. The sensor involves the use of expensive equipment such as a mass spectrometer and requires special gases to operate, thus incurring significant capital and operational costs. This makes the sensor more an advanced laboratory tool than an on-line sensor. (C) 2003 Wiley Periodicals, Inc.
Resumo:
A simplified fluorescence inhibition microtest (SFIMT) was standardized for the evaluation of antirabies serum neutralizing antibodies based on the rapid fluorescent focus inhibition test (RFFIT) and the fluorescence inhibition microtest (FIMT). The simplified test showed reproductibility similar to that of the FIMT with advantages as easier executation and quicker reading. A simple pre-treatment of Brazilian microplates produced for immune enzymatic assays (PROSIL) gave equivalent results and substantial coast reduction, in relation to imported plates (DIFCO). The simplified test can be easily implemented in less sophisticated laboratories, as alternative to the mouse serum neutralization test, still the most largely employed in Brazil, or even to others as RFFIT and FIMT.
Resumo:
To determine the rabies antibody level of twenty-four hyperimmune equine sera, Standard Mouse Neutralization (SMN) and Couterimmunoelectrophoresis (CIE) tests were carried out, both at the Instituto Butantan (IB) and Instituto Panamericano de Protección de Alimentos y Zoonosis (INPPAZ). Statistical analysis has shown a correlation (r) of 0.9317 between the SMN and CIE performed at the IB, while at the INPPAZ it scored 0.974. Comparison of CIE data of both laboratories yielded a correlation of 0.845. The CIE technique has shown to be as sensitive and efficient as the SMN in titrating antirabies hyperimmune equine sera. Based on CIE results, a simple, rapid and inexpensive technique, tilers of sera antibody can be reliably estimated in SMN test.
Resumo:
While developing a high-pressure liquid chromatography assay for cefepime in plasma, we observed significant drug degradation at 20 and 37 degrees C but not at 4 degrees C. This plasma-related degradation persisted after protein removal. This warrants caution regarding cefepime assays for pharmacokinetic and pharmacodynamic studies of cefepime in vitro and in vivo.
Resumo:
This study proposes a method of direct and simultaneous determination of the amount of Ca2+ and Mg2+ present in soil extracts using a Calcium Ion-Selective Electrode and by Complexometric Titration (ISE-CT). The results were compared to those obtained by conventional analytical techniques of Complexometric Titration (CT) and Flame Atomic Absorption Spectrometry (FAAS). There were no significant differences in the determination of Ca2+ and Mg2+ in comparison with CT and FAAS, at a 95 % confidence level. Additionally, results of this method were more precise and accurate than of the Interlaboratorial Control (IC).
Resumo:
ABSTRACT Intrinsic equilibrium constants of 17 representative Brazilian Oxisols were estimated from potentiometric titration measuring the adsorption of H+ and OH− on amphoteric surfaces in suspensions of varying ionic strength. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. The former was fitted by calculating total site concentration from curve fitting estimates and pH-extrapolation of the intrinsic equilibrium constants to the PZNPC (hand calculation), considering one and two reactive sites, and by the FITEQL software. The latter was fitted only by FITEQL, with one reactive site. Soil chemical and physical properties were correlated to the intrinsic equilibrium constants. Both surface complexation models satisfactorily fit our experimental data, but for results at low ionic strength, optimization did not converge in FITEQL. Data were incorporated in Visual MINTEQ and they provide a modeling system that can predict protonation-dissociation reactions in the soil surface under changing environmental conditions.
Resumo:
A Knudsen flow reactor has been used to quantify surface functional groups on aerosols collected in the field. This technique is based on a heterogeneous titration reaction between a probe gas and a specific functional group on the particle surface. In the first part of this work, the reactivity of different probe gases on laboratory-generated aerosols (limonene SOA, Pb(NO3)2, Cd(NO3)2) and diesel reference soot (SRM 2975) has been studied. Five probe gases have been selected for the quantitative determination of important functional groups: N(CH3)3 (for the titration of acidic sites), NH2OH (for carbonyl functions), CF3COOH and HCl (for basic sites of different strength), and O3 (for oxidizable groups). The second part describes a field campaign that has been undertaken in several bus depots in Switzerland, where ambient fine and ultrafine particles were collected on suitable filters and quantitatively investigated using the Knudsen flow reactor. Results point to important differences in the surface reactivity of ambient particles, depending on the sampling site and season. The particle surface appears to be multi-functional, with the simultaneous presence of antagonistic functional groups which do not undergo internal chemical reactions, such as acid-base neutralization. Results also indicate that the surface of ambient particles was characterized by a high density of carbonyl functions (reactivity towards NH2OH probe in the range 0.26-6 formal molecular monolayers) and a low density of acidic sites (reactivity towards N(CH3)3 probe in the range 0.01-0.20 formal molecular monolayer). Kinetic parameters point to fast redox reactions (uptake coefficient ?0>10-3 for O3 probe) and slow acid-base reactions (?0<10-4 for N(CH3)3 probe) on the particle surface. [Authors]
Resumo:
The complex chemical and physical nature of combustion and secondary organic aerosols (SOAs) in general precludes the complete characterization of both bulk and interfacial components. The bulk composition reveals the history of the growth process and therefore the source region, whereas the interface controls--to a large extent--the interaction with gases, biological membranes, and solid supports. We summarize the development of a soft interrogation technique, using heterogeneous chemistry, for the interfacial functional groups of selected probe gases [N(CH(3))(3), NH(2)OH, CF(3)COOH, HCl, O(3), NO(2)] of different reactivity. The technique reveals the identity and density of surface functional groups. Examples include acidic and basic sites, olefinic and polycyclic aromatic hydrocarbon (PAH) sites, and partially and completely oxidized surface sites. We report on the surface composition and oxidation states of laboratory-generated aerosols and of aerosols sampled in several bus depots. In the latter case, the biomarker 8-hydroxy-2'-deoxyguanosine, signaling oxidative stress caused by aerosol exposure, was isolated. The increase in biomarker levels over a working day is correlated with the surface density N(i)(O3) of olefinic and/or PAH sites obtained from O(3) uptakes as well as with the initial uptake coefficient, γ(0), of five probe gases used in the field. This correlation with γ(0) suggests the idea of competing pathways occurring at the interface of the aerosol particles between the generation of reactive oxygen species (ROS) responsible for oxidative stress and cellular antioxidants.
Resumo:
A recently developed calculation method to determine stoichiometric dissociation constants of weak acids from potentiometric titration data is described. The titration data from three different weak acids in aqueous salt solutions at 25 °C were used as examples of the use of the method. The salt alone determined the ionic strength of the solutions considered in this study, and salt molalities up to 0,5 mol kg -1 were used.